Атом меди в гемоглобине
Содержание статьи
Голубая кровь или Гемоцианин вместо гемоглобина
Как мы уже знаем, основным отличием гемоглобина от хлорофилла является ион железа вместо магния. Подробнее — Хлорофилл и гемоглобин или Что общего между зелеными листьями и людьми
Что же будет, если вместо железа в крови будет медь? Кровь будет голубого (синего) цвета — цвет кожи будет соответствующий.
«Голубых кровей» — это в прямом смысле а не переносном или Синяя кожа — «медный» гемоглобин
Из Вики:
Гемоцианин (от др.-греч. αἷμα — кровь и др.-греч. κυανoῦς — лазурный, голубой) — дыхательный пигмент из группы металлопротеинов, является медьсодержащим функциональным аналогом гемоглобина. Встречается в крови моллюсков, членистоногих и онихофор. В пределах типа моллюсков гемоцианин широко распространён среди головоногих и некоторых брюхоногих. В пределах типа членистоногих — среди мечехвостов, ракообразных, паукообразных и многоножек, а недавно (2003) обнаружен и у представителя класса насекомых. Следует отметить, что гемоцианин моллюсков и членистоногих различается по структуре и некоторым свойствам, кроме того, существуют гемоцианины, выполняющие иные функции помимо переноса кислорода тканям. Так что можно говорить о гемоцианинах, как о группе сходных металлопротеинов.
Восстановленная форма гемоцианина бесцветна. Окисленная форма окрашивается в голубой цвет, наблюдается флуоресценция
Голубая кровь
Словосочетание «голубая кровь» появилось в лексиконе населения Европы относительно недавно, в XVIII веке. Считается, что это выражение возникло в испанской провинции Кастилия.
Именно там утонченные гранды гордо демонстрировали бледную кожу с проступающими синеватыми прожилками, являющуюся доказательством того, что их кровь не осквернена примесями «грязной» мавританской.
А существует ли она?
Для обеспечения жизнедеятельности организм должен потреблять кислород и выделять углекислый газ. Одна из главных функций крови — перенос кислорода и углекислого газа. Для этого «приспособлены» специальные элементы крови — дыхательные пигменты, которые содержат ионы металла, способные связывать молекулы кислорода и при необходимости отдавать их. У большинства животных дыхательным пигментом крови является гемоглобин, в состав которого входят ионы двухвалентного железа. Именно благодаря гемоглобину наша кровь красная.
Голубую кровь у некоторых позвоночных впервые описал знаменитый голландский натуралист Ян Сваммердам еще в 1669 году, однако объяснить природу этого явления ему не удалось. Только через два столетия, в 1878 году французский ученый Л. Фредерико изучил вещество, которое придавало крови моллюсков голубой цвет, и по аналогии с гемоглобином назвал его гемоцианином, от слов «тема» — «кровь» и «цианос» — «синий».
К этому времени было выяснено, что носителями голубой крови являются пауки, скорпионы и некоторые моллюски. Такой цвет придавали находящиеся в ней ионы меди. В гемоцианине одна молекула кислорода связывается с двумя атомами меди. При таких условиях и происходит посинение крови.
С точки зрения снабжения организма кислородом гемоцианин значительно уступает гемоглобину, в котором перенос осуществляется железом. Гемоглобин с этой важнейшей для жизнедеятельности организма задачей справляется в пять раз лучше.
Но и от меди, тем не менее, природа не отказалась полностью, а для некоторых животных и растений сделала ее совершенно незаменимой. И вот что интересно. Оказывается, родственные группы живых организмов могут иметь разную кровь, а произошли они вроде бы друг от друга. Например, у моллюсков кровь бывает красной, голубой, коричневой, с разными металлами. Выходит, что состав крови не столь уж важен для живых организмов.
Необычные люди
В XX веке происхождением голубой крови снова заинтересовались ученые. Они выдвинули гипотезу, что голубая кровь существует, и люди, в крови которых вместо железа преобладает медь -их назвали «кианетиками», — жили на нашей планете всегда. Правда, на самом деле кровь с преобладанием меди цвет имеет не голубой, а лиловый с синеватым оттенком.
Исследователи непознанного считают, что кианетики более живучи и жизнеспособны по сравнению с обычными людьми. Во-первых, они менее подвержены разнообразным заболеваниям крови. Во-вторых, их кровь обладает лучшей свертываемостью, и любые раны, даже очень тяжелые, не сопровождаются обильным кровотечением.
В качестве примера приводятся описываемые в исторической хронике события, когда израненные рыцари-кианетики не истекали кровью и продолжали успешно сражаться с маврами.
По мнению некоторых исследователей, кианетики появились на Земле неслучайно. Таким образом природа подстраховывалась на случай какой-либо глобальной катастрофы, которая может уничтожить большую часть человечества. Оставшиеся в живых более жизнестойкие голубокровные смогут дать начало еще одной, уже новой цивилизации.
Но есть и другое объяснение происхождения голубокровных людей: они потомки пришельцев из других планет.
Планета богов
Вселенная, в которой мы живем, многообразна. Даже в пределах Солнечной системы по спектральному излучению планет установлено, что они отличаются преобладающими в их строении элементами. Потому можно предположить, что где-то распространенного на нашей планете железа, играющего столь важную роль в жизнедеятельности внутренних органов организмов, очень мало, а меди — наоборот, очень много. Естественно, что там эволюция животного мира пойдет по пути использования для транспорта кислорода не железа, а меди. И люди и животные этой планеты будут обладать «аристократической», голубой кровью.
И вот эти голубокровные пришельцы прилетают на Землю и сталкиваются с местными жителями, живущими еще в каменном веке. Кем они, прилетевшие на «огненных птицах», могли показаться людям с планеты Земли? Всесильными богами! Письменности у большинства народов нашей планеты еще не было. Но о богах-пришельцах можно узнать из мифов, сказок, преданий.
В сказках и мифах очень редко можно увидеть у существ из «тридесятого государства» железо или услышать о твердом белом металле. А золото там встречается буквально на каждом шагу. Об этом можно прочесть у известного исследователя народных сказок В. Проппа: «Все, сколько-нибудь связанное с тридесятым государством, принимает золотую окраску. Дворец — золотой, предметы, которые нужно достать из тридесятого царства, — почти всегда золотые… В сказке о Жар-птице сидит Жар-птица в золотой клетке, конь имеет золотую узду, а сад Елены Прекрасной обнесен золотой оградой… Самой обитательнице этого царства, царевне, всегда присущ какой-нибудь золотой атрибут… Золотая окраска и есть печать иного царства».
Медь вместо железа?
Но был ли металл богов золотом? Как известно, чистое золото не только тяжелый, но и мягкий металл. Из него не сделаешь колесницу, да и в качестве орудия его не используешь.
И вот что интересно: в разных районах Земли не соприкасающиеся между собой цивилизации стали использовать не медь, а ее сплавы: с цинком — латунь и с оловом — бронзу. Причем находить эти «присадки» к медной руде — дело очень сложное, что могут подтвердить геологи. А металлурги не поверят, что оптимальное соотношение меди и олова для придания будущему металлу необходимых свойств было выявлено «методом научного тыка».
Другое дело, если эти технологии были принесены богами, прилетевшими с другой планеты, где десятки тысяч лет используется такая технология. И тогда «золотое царство», фигурирующее в сказках и мифах почти всех народов Земли, правильнее будет назвать «медным».
Изготовление медных орудий началось при первых фараонах (4000-5000 лет до н. э.), которые считались потомками богов, прилетевших с неба. Причем технология извлечения металла из руды как-то очень быстро распространилась по всей планете. Железо же появилось в обиходе людей намного позже — лишь во II тысячелетии до н. э.
Голубая кровь против красной
Боги, прилетевшие когда-то на Землю, кроме умения добывать и обращаться с металлом оставили еще один «подарок» аборигенам — голубую кровь у людей, чаще всего общающихся с ними, а после ставших правителями в разных странах.
Прилет богов и, главное, их длительное пребывание на Земле можно объяснить необходимостью добычи здесь каких-то элементов, отсутствующих на их родной планете. Причем для этого им было необходимо стать частью земной биосферы. Для того чтобы выжить, богам нужно было непрерывно пополнять собственный организм медью, необходимой для кроветворения. Но железо в организме химически более активно, чем медь. Поэтому, попадая в кровь богов, оно будет вытеснять медь из ее соединений в крови.
Чтобы сохранить свойства голубой крови, надо потреблять продукты с высоким содержанием меди и низким содержанием железа. Железа содержится много в бобовых, овощах, ягодах и мясных продуктах, а меди — в злаках, крупах, хлебных изделиях.
Боги совершают революцию
Стремление забросить привычные охоту и собирательство не было для древних людей насущной необходимостью. Людей в то время было мало, а лесов и дичи в них — много. Ягоды и съедобные плоды буквально лежали под ногами. Но человек под воздействием богов неожиданно начинает выращивать злаковые растения, бедные железом, зато богатые медью.
Прошло много веков после «революции», произошедшей в питании, но и сейчас в промышленно развитых странах, где большинство жителей оторваны от природного питания, популярно дополнительное обогащение хлебобулочных изделий железом для компенсации дисбаланса элементов.
О том, что эта революция была проведена именно появившимися на Земле богами, свидетельствует и специфика жертвоприношений им. Это, кстати, отражено и в христианской Библии. Одна из притчей рассказывает о том, что Бог отверг принесенного Каином ягненка и принял зерно Авеля.
Стремление уподобиться богам, достичь просветления, прикоснуться к высшему знанию во всех основных религиях, существующих на нашей планете, связано с вегетарианским образом жизни, принесенным на Землю богами с голубой кровью.
За все надо платить…
Однако прилетевшие на Землю с «медной» планеты боги оставили землянам не только начальные навыки в металлургии и стремление к вегетарианству как путь к нравственному самосовершенствованию.
Для дальних потомков богов, у которых в той или иной степени сохранилась голубая кровь, порой характерен избыток углекислого газа в крови. Он не был постоянным и привычным для их организмов.
Это подтверждается постоянной потребностью таких людей в спиртных напитках для компенсации вредного газа. Легендарную сому, хмельной квас и мед, пиво, девять сортов спиртных напитков, сделанных из маиса, боги дали американским индейцам и внесли их в список жертвоприношений! Боги даже не пренебрегали виноградным вином, в котором много железа. Видимо, трудна была их жизнь на Земле, раз потребность в алкоголе для компенсации углекислого газа была столь велика…
Михаил ТАРАНОВ
Источник
Строение гемоглобина, биологическая и физиологическая роли, небелковая часть, число генов, клиническое значение
Строение гемоглобина влияет на его способность присоединять кислород, он содержит красный пигмент гем с железом и белок глобин. Они соединяются в субъединицы, а потом четыре из них скрепляются в один комплекс. Каждый гем с глобином могут переносить кислород и забирать из тканей углекислый газ.
Биологическая роль гемоглобина состоит в обеспечении тканевого дыхания, он также регулирует кислотность крови, связывает токсины. Нормальными формами считается оксигемоглобин (соединение с кислородом), дезоксигемоглобин (углекислота вместо кислорода). В норме в крови есть и немного окисленной формы (метгемоглобин), но при повышении ее уровня нарушается способность гемоглобина обеспечивать ткани кислородом.
Строение гемоглобина и его структура
Гемоглобин имеет в структуре две части – белок глобин и небелковый гем, строение молекулы позволяет ему присоединять и отдавать кислород, воду и углекислый газ. Гем относится к пигментам, то есть красящим веществам. Он придает крови алый цвет. Внутри гема есть железо. Гемоглобин содержит 4 гема, каждый со всех сторон обвит цепочкой аминокислот белка глобина. Эти 4 субъединицы позволяют связывать 4 молекулы кислорода из воздуха в легких.
Эритроциты, состоящие на 95% из гемоглобина, захватывают кислородные молекулы и переносят его к клеткам организма. Гемоглобин отдает кислород, а взамен забирает воду и углекислый газ, которые выделяются также через легкие. Соединение гемоглобина с кислородом называется оксигемоглобин, а с углекислотой – дезоксигемоглобин. Все они в норме есть в эритроцитах.
Если гемоглобин соединяется с угарным газом, то блокируются все 4 части молекулы, в результате она теряет способность соединяться с кислородом. Если есть отравление азотом или цианидами, то железо становится из двухвалентного (нормального) трехвалентным. Это тоже нарушает перенос кислородных молекул, образуется метгемоглобин. Подобная реакция бывает и при отравлении некоторыми медикаментами, наследственных болезнях.
Виды
Все виды гемоглобина делятся на нормальные (физиологические) и с нарушенной структурой (патологические). Для их обозначения используют латинские буквы и сокращение Hb (haemoglobinum).
Нормальные формы
В норме можно найти в крови:
- зрелый гемоглобин HbA, его у взрослого 95-98%, а у новорожденного 80%;
- фетальный гемоглобин HbF (фетус означает плод) образуется со 2 месяца беременности у плода, циркулирует до рождения, разрушается в первую неделю жизни, отличается большей способностью захватывать кислород;
- эмбриональный HbE образуется у плода до 2 месяца внутриутробного развития.
В зависимости от того, что присоединил гемоглобин, выделены формы:
- HbО2 – соединение с кислородом (оксигемоглобин);
- HbСО2 – гемоглобин с углекислым газом, он называется дезоксигемоглобин;
- HbMet – метгемоглобин с окисленным железом, его количество в норме допускается до 3%.
Патологические
Патологических гемоглобинов известно более 300 форм. Наиболее часто находят:
- HbS – гемоглобин при серповидно-клеточной анемии;
- HbCO – карбоксигемоглобин, образующийся при отравлении угарным газом;
- HbA1С – гликозилированный гемоглобин, его уровень возрастает при сахарном диабете.
Железо входит в состав гемоглобина крови?
Ионы металла железа входят в состав гемоглобина и находятся в центре каждой из 4 субъединиц. У них есть 4 связи постоянные и две свободные валентности, одна из них соединена с белком, а ко второй может прикрепиться кислород или вода, азот, углекислота.
Небелковая часть гемоглобина
Гем – это небелковая часть гемоглобина, составляющая 4% от его массы. По химическим свойствам он является пигментом красного цвета. Молекула гемоглобина содержит ионы железа двухвалентного, при окислении оно переходит в трехвалентное, а гем – в гематин, гемоглобин – в метгемоглобин. Перенос кислорода при этом нарушается.
Провоцируют потерю способности к транспортировке молекул свободные радикалы. Они образуются при обменных нарушениях, сахарном диабете, применении некоторых медикаментов (Парацетамол, сульфаниламиды), попадании нитратов из воды и продуктов. Препятствуют окислению гема витамины С, А, Е и микроэлемент селен. Они относятся к системе антиоксидантной защиты организма. Больше всего их содержится в таких продуктах:
- болгарском перце, черной смородине, цитрусовых, зеленом горошке (витамин С);
- говяжьей печени, молоке, твороге, моркови, шпинате (витамин А и провитамин каротин);
- растительном масле, зародышах пшеницы, орехах (витамин Е);
- яйцах, кукурузе, чечевице, миндале, бразильских орехах (селен).
Биологическая роль гемоглобина
Основная биологическая роль гемоглобина – это обеспечение тканевого дыхания, переноса кислорода для образования энергии и удаления углекислого газа. При этом первая его функция основная для организма, так как без гемоглобина кислородное обеспечение невозможно. Для выведения углекислоты есть и другие пути – 80% ее просто растворяется в крови и только 20% переносит гемоглобин.
Нарушение этих процессов происходит при снижении абсолютного числа гемоглобина или потери его активности. Чтобы проверить достаточность питания клеток кислородом, назначается общий анализ крови, а последствия нехватки показывает биохимия:
- напряжение кислорода;
- кислородная емкость;
- артерио-венозная разница по кислороду;
- насыщение гемоглобина кислородом.
Какое число гемов в составе молекулы гемоглобина
Каждая молекула гемоглобина содержит 4 единицы гема. Они образуются из аминокислоты глицина и органической янтарной кислоты. Первый компонент (глицин) содержатся в мясных и рыбных продуктах (говядина, курица, тунец, окунь, щука, скумбрия). Источником янтарной кислоты может стать:
- кефир, простокваша, йогурт, творог;
- крыжовник, вишня, яблоки;
- семена и масло подсолнечника;
- ржаной хлеб.
Физиологическая роль гемоглобина
Физиологическая роль гемоглобина не ограничивается только процессом тканевого дыхания, он также:
- поддерживает равновесие между кислотами и щелочами;
- выводит из клеток кислоту, предупреждая их закисление, снижающее иммунную реакцию;
- тормозит защелачивание крови в легких;
- связывает токсические соединения (нитраты, углекислый газ, сероводород, цианиды), но при их высокой концентрации возникает кислородное голодание или даже смерть.
Гемоглобин: клиническое значение
При снижении нормальных форм гемоглобина в крови ставят диагноз анемии, клиническое значение имеют показатели ниже 100 г/л при норме 120-140 г/л для женщин и 135-160 г/л для мужчин. Для детей результат рассматривают в зависимости от возраста – нижняя граница может быть от 90 единиц для грудничков и 105-115 для ребенка в 7-12 лет.
Симптоматика сниженного гемоглобина в крови включает признаки дефицита кислорода: общая и мышечная слабость, одышка, частый пульс, быстрая утомляемость, головная боль, головокружение, обморочные состояния. Анализ крови на эритроциты и гемоглобин покажет их нехватку, но не дает возможности определить причину. Поэтому требуется обследование: тесты на ферритин, трансферрин, железо и способность к его связыванию.
Реже обнаруживают гемоглобин выше нормы, это состояние называется полиглобулией и бывает при опухолевом процессе, длительной дыхательной и сердечной недостаточности. Для высоких показателей типично покраснение кожи, синева в носогубном треугольнике, головные боли, снижение зрения, тяжесть в правом подреберье.
Миоглобин и гемоглобин – отличия
Миоглобин и гемоглобин похожи, но первый находится в мышечной ткани, в отличие от гемоглобина, циркулирующего в крови. Он способен присоединять и временно удерживать кислород, перемещать его внутри клеток. При недостаточном поступлении кислорода миоглобин временно устраняет его дефицит.
Молекула гемоглобина имеет сложную структуру, состоит из нескольких белковых цепей, а миоглобин имеет только одну цепочку. В норме миоглобина в крови нет, он появляется только при разрушении мышечной ткани. Этим признаком пользуются при постановке диагноза инфаркта миокарда, так как в сердечной мышце содержится особый вид этого белкового комплекса.
Частые вопросы по структуре гемоглобина
Какая валентность железа в гемоглобине? В норме железо двухвалентное, при окислении переходит в трехвалентное, что ухудшает перенос кислорода.
В чем особенность химического строения гемоглобина? Гемоглобин имеет четвертичную структуру, то есть белковые цепи и пигмент вначале соединены в комплексы (первичная структура), а потом эти четыре субъединицы скрепляются между собой.
Что такое нативный гемоглобин и какую он имеет структуру? Нативный гемоглобин – это нормальный, не поврежденный, в его структуре есть гем и глобин, соединенные в 4 комплекса.
Сколько атомов железа в молекуле гемоглобина? В составе гемоглобина 4 гема с железом, поэтому в одной молекуле содержится 4 атома этого микроэлемента.
Строение гемоглобина позволяет ему присоединить кислород, переносить его к клеткам, забирать углекислый газ. При снижении возникает анемия с симптомами кислородного голодания.
Источник