Биологическая роль холестерина предшественник

Холестерин, строение, биологическая роль, биосинтез и распад холестерина в организме человека

Биологическая роль холестерина предшественник

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

Холестерин является одноатомным циклическим спиртом, который в тканях легко образует ХОЛЕСТЕРИДЫ. В организм человека поступает в составе пищи и синтезируется г.о. в печени, тонком отделе кишечника и коже.

Биологическая роль холестерина:

1.Структурная. Свободный холестерин является, обязательным структурным компонентом мембран клеток.

2.Метаболическая. Холестерин является предшественником биологически активных веществ: витамина D3,СТЕРОИДНЫХ гормонов (АНДРОГЕНОВ, ЭСТРОГЕНОВ, КОРТИКОИДОВ) При окислении холестерина в печени при участии ЦИТОХРОМА Р-450 образуются желчные кислоты. В свободном виде холестерин транспортируется по организму с помощью транспортных ЛИПОПРОТЕИНОВ крови. Источники холестерина:

1. Пища. За сутки в организм взрослого человека поступает 0,3гр. холестерина.

2. У человека в среднем с массой 65-70кг за сутки синтезируется 3.5 -4,2гр. холестерина. Печень занимает главное место в синтезе холестерина (85%), холестерин синтезируется в кишечнике (10%) и коже (5%). Процесс биосинтеза многоступенчат:

Образовавшийся в результате распада мембранных ЛИПИДОВ, а также излишки холестерина с помощью ЛПВП доставляется для окисления в печень, и в составе желчных кислот удаляется из организма с каловыми массами. При поражении печени и кишечника нарушается образование и транспорт ЛП крови. При поражении печени и желчевыводяицих путей нарушается образование и экскреция желчных кислот, участвующих в переваривании жиров пищи. В случае нарушения оттока желчи происходит насыщение её холестерином, что ведёт в этих условиях к застою и образованию холестериновых камней. Развивается ЖЕЛЧЕКАМЕННАЯ БОЛЕЗНЬ. В крови отмечается ГИПЕРХОЛЕСТЕРИНЕМИЯ.

Витамины, их характеристика, отличительные признаки витаминов. Номенклатура и классификация витаминов. Роль витаминов в обмене веществ. Причины недостаточной обеспеченности организма витаминами. Понятие о гипо-, гипер- и авитаминозах. Причины гиповитаминозов.

Русский врач ЛУНИН в эксперименте на животных установил, что животные, которых кормили казеином, жирами, лактозой, водой и минеральными солями болели и погибали, в отличие от животных, получавших свежее молоко. В 1911г. учёный ФУНД выделил и кристаллизовал азотсодержащее вещество, которое вылечивало экспериментальную бери-бери. Это вещество он назвал ВИТАМИНОМ (амином жизни).

Витамины — это НМС различного строения, синтез которых в организме отсутствует или ограничен. Особенности витаминов:

-не синтезируются в организме или синтезируются в недостаточном количестве;

-не выполняют пластической функции, т.е. не являются структурным компонентом клеток;

-не выполняют энергетической функции;

-выполняют специфические функции, которые не могут быть восполнены другими соединениями;

-при дефиците витаминов в организме развивается патологическое состояние с характерными клиническими признаками;

-витамины — это метаболиты, суточная потребность в которых выражается в миллиграммах, микрограммах или ME.

КЛАССИФИКАЦИЯ ВИТАМИНОВ. жирорастворимые (A, D, E, К) и водорастворимые (РР, С, В1, В2, ВЗ, В6, В10, В12, Н).. НОМЕНКЛАТУРА: Каждый витамин имеет:

o буквенное название: аскорбиновая кислота — вит.С; ретинол — вит.А.

o химическое название: вит.В1 -тиамин.

· 3. Клиническое название, которое формируется из клинической картины патологического состояния, которое развивается при дефиците витамина в организме с приставкой «анти»: Вит.D — антирахитический; Вит.С — антискорбутный.

ФУНКЦИИ ВИТАМИНОВ В ОРГАНИЗМЕ.

o Выделяют группу энзимовитаминов — это предшественники коэнзимов или простетических групп ферментов:

· Функциональное производное вит. РР: НАД и НАДФ. Функциональное производное вит.В2: ФМН и ФАД.

o Гормоновитамины: последовательная активация вит.DЗ приводит к образованию кальцитриола.

o Редоксвитамины или витамины- антиоксиданты — это вещества, которые препятствуют развитию процессов свободно-радикального окисления. Это природные оксиданты: Е, С, А.

o Участвуют в синтезе медиаторов (вит.С — серотонин), стероидных гормонов.

Витаминные коферменты

Тиаминсодержащие (вит. B1) — тиаминмонофосфат (ТМФ), тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ)

Флавиновые (вит В2 — рибофлавин) — флавинмононуклетид (ФМН), флавинадениндинуклеотид (ФАД)

Никотинамидные (содержат вит. РР или Никотинамид) — никотинамидадениндинуклеотид (НАД),

никотинамидадениндинуклеотидфосфат (НАДФ)

В результате многочисленных исследований витаминной обеспеченности было установлено, что глубокий дефицит витаминов наблюдается менее чем у 20% населения, а содержание витаминов ниже нормы наблюдается у 50 — 90% населения. Содержание витаминов определяется в крови. Недостаточная витаминная обеспеченность проявляется: (1) повышенная утомляемость; (2) повышенная сонливость; (3) повышенная восприимчивость к заболеваниям; (4) повышена частота сердечно-сосудистых заболеваний; (5) повышение тяжести переноса заболеваний. При этом отсутствует специфическая клиническая симптоматика, как при гиповитаминозах. Причины недостаточной витаминной обеспеченности:

Читайте также:  Повышенный холестерин в крови что болит при этом

1. Снижение затрат энергии в современных условиях, следовательно, необходимость снижение

потребления пищи.

2. Повышение потребления рафинированных продуктов, калорийных, но бедных витаминами.

3. Использование консервированных продуктов длительного хранения. Выход:

1. Витаминизация пищи.

2. Поливитамины с не менее 8-9 компонентами.

Рацион современного человека, достаточный по калорийности, не может удовлетворить потребность организма в витаминах и микроэлементах.

АВИТАМИНОЗ — это патологическое состояние, которое развивается в результате отсутствия витаминов организме, характеризуется чёткой клинической симптоматикой.

ГИПЕРВИТАМИНОЗ — это состояние, связанное с избытком витамина в организме человека. Растворимые в воде витамины, не накапливаются в организме, их избыток выводится из организма с мочой. Жирорастворимые витамины депонируются

ГИПОВИТАМИНОЗ — патологическое состояние, связанное с недостатком витаминов в организме. В зависимости от причины гиповитаминоз может быть:

1. Первичный (ЭКЗОГЕННЫЙ), связанный с дефицитом витаминов в употребляемой пище.

2. Вторичный, связанный с причинами эндогенного характера:

-нарушение всасывания витаминов в ЖКТ;

-недостаточный синтез витаминов микрофлорой кишечника (вит.В и вит.К), например,

-при дисбактериозе;

-поступление в пищу пищевых или лекарственных антивитаминов, которые препятствуют активации и всасыванию витаминов;

— нарушение активации при усвоении витаминов в организме при патологии печени и почек;

-относительная недостаточность из-за, беременности, кормлении грудью, требующие повышенного количества витаминов.

Источник

Биологическая роль холестерина

Кафедра медицинской химии

Реферат

Строение и биологическая роль холестерина.
Гиперхолестеринемия и атеросклероз.

(обзор литературы)

Выполнила:

студентка 2 курса

медико-профилактического факультета

специальности «Медицинская биохимия», 1 группы

Бабаха Вероника Александровна

Научный руководитель:

канд. хим. наук, доцент, Терах Е.И.

Новосибирск – 2015

Содержание

Введение………………………………………………………………………………………………….3

Строение холестерина…………………………………………………………4

Биологическая роль……………………………………………………………5

Гиперхолестеринемия…………………………………………………………6

Лечение гиперхолестеринемии……………………………………………….7

Профилактикагиперхолестеринемии……………………………………….8

Атеросклероз……………………………………………………………………8

Клиническая картина………………………………………………………….9

Последствия атеросклероза…………………………………………………..10

Основные принципы лечения…………………………………………………12

Заключение…………………………………………………………………….13

Список литературы……………………………………………………………14

Введение

Холестерин – загадка современной науки. О нем написаны тонны научной литературы. Загадочности поубавилось, но проблемы, связанные с холестерином, остались.

В 1769 г. Пулетье де ла Саль получил из желчных камней плотное белое вещество, обладавшее свойствами жиров. В чистом виде холестерин был выделен химиком, членом национального Конвента и министром просвещения Антуаном Фуркруа в 1789 г. В 1815 г. Мишель Шеврёль, так же выделивший это соединение, назвал его холестерином. В 1859 г. Марселен Бертло доказал, что холестерин принадлежит к классу спиртов, после чего французы переименовали его в «холестерол». В ряде языков сохранилось старое название – холестерин[1].

Особое же внимание к холестерину было привлечено, когда обнаружилось, что большая часть населения в той или иной степени больна атеросклерозом (поражением сосудов в результате отложения в них холестерина).

Так для чего и зачем нужен холестерин и какова его биологическая роль? Этот вопрос интересует не только научных работников, но и тех, кому врачи посоветовали следить за его уровнем и беречь здоровье.

Строение холестерина

Холестерин (холестерол)– органическое соединение, жирорастворимый спирт, относящийся к классу стероидов. Молекулярная формула С27Н46О.

Углеродный скелет холестерина состоит их четырех колец: три кольца содержат по 6 атомов углерода и одно пять. От него отходит длинная боковая цепь. Нерастворим в воде, но может образовывать с ней коллоидные растворы, растворим в жирах и органических растворителях.

В чистом виде представляет собой мягкое белое вещество (жирные на ощупь жемчужные кристаллы в виде игл) без запаха и вкуса[2].

Это соединение обнаруживается в организме, как в виде свободного стерина, так и в форме сложного эфира с одной из длинноцепочечных жирных кислот. Свободный холестерин – компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина – холестериды.

Читайте также:  Повышенный холестерин анализ крови

Свободный холестерин – компонент всех клеточных мембран и та основная форма, в которой холестерин присутствует в большинстве тканей. Исключение представляют кора надпочечников, плазма и атероматозные бляшки, где преобладают эфиры холестерина.

Холестерин не растворим в воде, поэтому в организме его нельзя встретить в одиночестве, он передвигается с помощью различных белков. Комплексы, получающиеся в результате такого соединения, называются липопротеинами. Они имеют сферическую форму – внутри находится холестериновый эфир и триглицериды, а оболочка состоит из белка[3].

Биологическая роль холестерина предшественник

Биологическая роль холестерина

Около 80% холестерина вырабатывается самим организмом (печенью, кишечником, почками, надпочечниками, половыми железами), 20% поступает с пищей. В организме человека холестерин бывает в свободной форме- 80%, в связанной форме- 20%.

Холестерин необходим для выработки витамина D, который участвует в регуляции обмена кальция и фосфора в организме. Используется надпочечниками для синтеза адренокортикотропных гормонов, яичниками для образования эстрогенов и прогестерона (женские половые гормоны), семенниками для синтеза тестостерона (мужские половые гормоны). Играет важную роль в деятельности синапсов головного мозга и иммунной системы, включая защиту от раковых заболеваний.

Холестерин используется для синтеза холевой кислоты в печени даже в большем количестве, чем для образования клеточных мембран. Более 80% холестерина превращается в холевую кислоту. Ее синтез наряду с использованием некоторых других веществ, приводит к образованию солей желчных кислот, которые обеспечивают переваривание и всасывание жиров.

Так же холестерин служит строительным материалом для клеточных оболочек, делая их прочными и эластичными[4].

Гиперхолестеринемия

Гиперхолестеринемия– повышение уровня холестерина в крови. Является основным фактором риска развития атеросклероза. Так же может стать причиной таких заболеваний как ишемическая болезнь сердца, диабет, желчнокаменная болезнь, ожирение.

Распространенность в различных странах: Япония – 7%, Италия – 13%, Греция – 14%, США – 39%, Украина – 25%.

Выделяют первичную и вторичную формы гиперхолестеринемии.

Причиной возникновения первичной гиперхолестеринемии(не является следствием каких-либо заболеваний) получение по наследству от одного или обоих родителей аномального гена, который отвечает за синтез холестерина. Вторичные(развивается вследствие некоторых заболеваний) гиперхолестеринемии вызывают такие состояния как гипотиреоз (снижение функции щитовидной железы), сахарный диабет, обструктивные заболевания печени (заболевания, при которых нарушается отток из печени желчи), например, желчнокаменная болезнь (образование камней в желчном пузыре).

В развитии и прогрессировании гиперхолестеринемии являются те же факторы, что и при атеросклерозе, такие как малоподвижный образ жизни( гиподинамия), злоупотребление жирной, богатой холестерином пищей, злоупотребление алкоголем, курение.

В группу риска по гиперхолестеринемии входят лица мужского пола, мужчины старше 45 лет; люди, страдающие ожирением[5].

Гиперхолестеринемия чаще выявляется случайно, при лабораторных методах обследования, таких как биохимический анализ крови. В норме показатель холестерина в крови у женщин 1,92-4,51 ммоль/л; у мужчин 2,25-4,82 ммоль/л. Согласно официальным рекомендация Всемирной Организации Здравоохранения «нормальные» значения жировых фракций в крови должный быть таковы:

1. Общий холестерин- меньше 5,2 ммоль/л

2. Холестерин липопротеинов низкой плотности- меньше 3-3,5 ммоль/л

3. Холестерин липопротеинов высокой плотности- больше 1,0 ммоль/л

4. Триглицериды – 2,0 ммоль/л [6].

Внешние проявления гиперхолестеринемии являются ксантомы- плотные узелки, содержащие холестерин , над сухожилиями пациента, например, на кисти; ксантелазмы – отложение холестерина под кожей век в виде плоских узелков желтого цвета или не отличающихся по цвету от других участков кожи;липоидная дуга роговицы – белый либо серовато-белый ободок отложившегося холестерина по краям роговицы глаза. Появление липоидной дуги роговицы в возрасте до 50 лет свидетельствует о наличии наследственной гиперхолестеринемии[5].

Источник

Стерины, стериды, их представители. Биологическая роль холестерина как предшественника других стеринов.

Биологическая роль холестерина предшественник

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

Читайте также:  Повышены холестерин и мочевина в крови

Биологическая роль холестерина предшественник

Мы поможем в написании ваших работ!

ЗНАЕТЕ ЛИ ВЫ?

СТЕРИНЫ (стеролы), алициклич. прир. спирты, относящиеся к стероидам; составная часть неомыляемой фракции животных и растит.липидов.

Стерины присутствуют практически во всех тканях животных и растений и являются наиб. распространенными представителямистероидов в природе. В зависимости от источника подразделяются на животные (зоостерины), растительные (фитостерины), стерины грибов (микостерины) и микроорганизмов.

Холестерин (cholesterol)— Тетрациклический ненасыщенный спирт из класса стероидов, важнейший представитель стеринов, являющийся в организме предшественником желчных кислот, кортикостероидов, половых гормонов, кальциферола и т.д. Нарушение обмена холестерина лежит в основе ряда генетически обусловленных заболеваний.

Длястеринов характерно наличие гидроксильной группы в положении 3, а также боковой цепи в положении 17. У важнейшего представителя стеринов – холестерина – все кольца находятся в транс-положении; кроме того, он имеет двойную связь между 5-м и 6-м углероднымиатомами. Следовательно, холестерин является ненасыщенным спиртом:

Каждая клетка в организме млекопитающих содержит холестерин. Находясь в составе мембран клеток, неэтерифицированныйхолестерин вместе с фосфолипидами и белками обеспечивает избирательную проницаемость клеточной мембраны и оказывает регулирующее влияние на состояние мембраны и на активность связанных с ней ферментов. В цитоплазме холестерин находится преимущественно в виде эфиров с жирными кислотами, образующих мелкие капли – так называемые вакуоли. В плазме крови как неэтерифицированный, так и этерифицированный холестерин транспортируется в составе липопротеинов.

Холестерин – источник образования в организме млекопитающих желчных кислот, а также стероидных гормонов (половых и кортикоидных). Холестерин, а точнее продукт его окисления – 7-дегидрохолестерин, под действием УФ-лучей в коже превращается в витамин D3.

Холестерин находится в животных, но не в растительных жирах. В растениях и дрожжах содержатся близкие по структуре к холестерину соединения, в том числе эргостерин.

Эргостерин – предшественник витамина D. После воздействия на эрго-стерин УФ-лучами он приобретает свойство оказывать противорахитное действие (при раскрытии кольца В).

Восстановление двойной связи в молекуле холестерина приводит к образованию копростерина (копростанола). Копростерин находится в составе фекалий и образуется в результате восстановления бактериями кишечной микрофлоры двойной связи в холестерине междуатомами С5 и С6

Указанные стерины в отличие от холестерина очень плохо всасываются в кишечнике и потому обнаруживаются в тканях человека в следовых количествах.Стериды — сложные эфиры высших жирных кислот со стеринами.

Витамин С. Химическая природа, распространение. участие в обменных процессах.

Водорастворимый. Антискорбутный/аскорбиновая кислота. Сут.потр. 75-120мг. Салат, капуста, укроп, черная смородина, шиповник, картофель.

Биологич.роль: окисление НАДН. Участиев ОВР, р.гидроксилирования пролина, лизина, при синтезе коллагена, гормнов коры надпочечников, трп; синтез катехоламинов(адренал). Антиоксидант: блокир.своб.радикалы. В обмене железа, включ.его в трансферрин. Образование желч.кислот.

Авитаминоз:поражение сосудистой стенки, опорных тканей; уменьш.массы тела, общая слабость, одышка, цинга. Скорбут. Гнойные воспаления.

Парные соединения мочи.

микробные ферменты кишечника вызывают постепенное разрушение боковых цепей циклических аминокислот, в частноститирозина и триптофана, с образованием ядовитых продуктов обмена – соответственно крезола и фенола, скатола и индола.

После всасывания эти продукты через воротную вену попадают в печень, где подвергаются обезвреживанию путем химического связывания с серной или глюкуроновой кислотой с образованием нетоксичных, так называемых парных, кислот (например, фенолсернаякислота или ска-токсилсерная кислота). Последние выделяются с мочой.

Индол (как и скатол) предварительно подвергается окислению в индоксил (соответственно скатоксил), который взаимодействует непосредственно в ферментативной реакции с ФАФС или с УДФГК. Так, индол связывается в виде эфиросерной кислоты. Калиевая соль этой кислоты получила название животного индикана, который выводится с мочой. По количеству индикана в моче человека можно судить не только о скорости процесса гниения белков в кишечнике, но и о функциональном состоянии печени. О функции печени и ее роли в обезвреживании токсичных продуктов часто также судят по скорости образования и выделения гиппуровой кислоты с мочой после приема бензойной кислоты

Билет№22

Источник