Фетальный гемоглобин у взрослых норма

Гемоглобин F

Это изображение матери и маленького плода, и это точка, где плод всё ещё связан с матерью пуповиной. Всё, что получает плод, он получает от матери. Она контролирует все питательные вещества и кислород, которые поступают ребёнку. Есть несколько интересных путей того, как ребёнок (в нашем случае этот маленький плод справа) может получить максимально возможное количество кислорода от матери. Мы помним, что плод старается вырасти и хочет, чтобы все растущие и развивающиеся ткани получали достаточно кислорода, что обеспечивается несколькими способами. Способ 1. Я изображу его для вас на примере пробирки с кровью. Рассмотрим одну пробирку с кровью от матери и сравним её с пробиркой с кровью ребёнка. Я нарисую пробирки одинаковой ширины и высоты. Вот эти 2 пробирки. Если бы сейчас я взял немного крови матери и центрифугировал её в этой маленькой трубочке, а затем сделал бы то же самое с кровью ребёнка, взял немного крови ребёнка и тоже центрифугировал, то такая центрифугированная кровь фактически разделилась бы на части. Мы бы получили 3 разных слоя. Первый слой под названием плазма был бы таким. Следующий слой, сразу под первым, это тонкий слой белых клеток крови и тромбоцитов. Сразу под ним идёт слой красных клеток крови. Красные клетки крови — это клетки, содержащие гемоглобин. Это единственные клетки, которые переносят кислород. У матери процент таких красных клеток крови составляет почти 35%. Это означает, что если взять всю кровь за 100%, то только 1/3, или точнее 35% занимает нижний слой красных клеток крови. Вот это слой красных клеток крови. Назовём его гематокрит. Это гематокрит матери, и это обычное значение для беременной женщины. Значение гематокрита зависит от вашего пола, а также от возраста. Но у беременной женщины он обычно составляет 35%. Перейдём к ребёнку. Давайте изобразим, на что похожа кровь ребёнка. В крови ребёнка меньшую часть занимает плазма, поэтому здесь этот слой будет меньше. И следующий слой, слой белых клеток крови, остаётся таким же маленьким и практически не меняется. Последний третий слой — слой красных клеток крови. Этот слой занимает почти 55%. Надеюсь, я не ошибся, и он составляет почти 55%. Здесь значение гематокрита намного выше. Что же это означает? Если у ребёнка гематокрит выше, почти 55%, это означает, что у него больше красных клеток в соответствующем количестве крови, и эти красные клетки могут принять больше кислорода, так как именно они как часть крови его переносят. Это и есть один из способов получения большего количества кислорода. Просто большее количество красных клеток крови в заданном количестве крови. У ребёнка увеличивается количество красных клеток крови, вот один из способов, о которых я говорю. Каков же другой способ и стратегия того, как ребёнок или плод может получить больше кислорода от матери? Если мы подумаем о количестве, мы можем также подумать о типе. Я имею в виду тип гемоглобина. Мы знаем, что взрослый гемоглобин бывает четырёх типов. Я напишу типы взрослого гемоглобина вот здесь, слева. И так, взрослый гемоглобин. «Hb» — гемоглобин, и «A» — взрослый. Я напишу здесь «взрослый», чтобы вы понимали, что к чему. Типов взрослого гемоглобина несколько, но я изображу самый важный. Есть ещё несколько типов… Этот, как я сказал, самый важный состоит из нескольких альфа-субъединиц, пептидов, которые в определённой констелляции называются альфа-субъединицами, и нескольких бета-субъединиц, которые немного отличаются от альфа-субъединиц. Соответственно мы имеем соотношение 2 на 2, так как гемоглобин состоит из четырёх субъединиц. Здесь мы видим по 2 субъединицы каждого типа. С точки зрения плода всё выглядит немного иначе, у нас есть гемоглобин, Hb, но на этот раз F — фетальный. Фетальный гемоглобин также бывает нескольких типов, самый важный из которых — HbF, который также состоит из альфа-субъединиц, которых опять две, но вместо бета-субъединиц он состоит из гамма-субъединиц. Это греческая буква гамма. Теперь кислород связывается обоими типами гемоглобина. И взрослый, и фетальный гемоглобин может связаться с 4 молекулами кислорода. Я нарисую здесь 4 молекулы кислорода, чтобы вы поняли мысль. Внутри красных кровяных клеток есть маленькая молекула, я нарисую её для вас. Она состоит из трёх углеродов, которые я пронумеровал. Два из которых связаны с кислородом, который в свою очередь связан с фосфатом. Фосфат обычно имеет 5 связей. Я просто показываю вам, как выглядит эта маленькая молекула. То же самое происходит со всеми 3 углеродами. Вот так выглядит молекула внутри красной клетки крови, у неё несколько фосфатов, которые образуют подобные связи, как показано в первом случае. Эта маленькая молекула называется (возможно, глядя на рисунок, вы уже догадались) 2 и 3 (я имею в виду эту 2 и вот эту 3) Ди (так как у неё два фосфата) Ди-фосфо-глицерат. И так, ди-фосфо и глицерат, который относится к этой части. Именно эту часть мы имеем в виду, когда говорим о глицерате, поэтому дифосфоглицерат. Сокращённое название 2,3-дифосфоглицерата — 2,3-ДФГ, так как людям не нравится произносить его полное название. Когда мы говорим «2,3-ДФГ», мы имеем в виду именно эту молекулу, которая находится внутри красных клеток крови и фактически помогает красной клетке крови избавляться от кислорода. Я нарисую, как эта маленькая молекула это делает. Теперь, когда вы знаете её состав, я просто нарисую жёлтую точку. Это та же самая молекула, поэтому я поставил между ними знак «равно». Эта маленькая молекула образует связь в середине красной клетки крови с бета-субъединицами. В реальности бета-субъединицы такой формы, что с ними очень легко образовать связь. Эта молекула находится между 4 субъединицами, бета- и альфа-, фактически они формирует конформацию, или молекулярное изменение, после которого маленькие атомы кислорода хотят выйти из её состава. Поэтому её основная функция заключается в облегчении выхода кислорода из гемоглобина. Теперь, когда молекула переходит на сторону плода и пытается образовать связь, происходит так, что эти гамма-субъединицы начинают ей говорить: «Уходи отсюда!» Они не хотят связываться с 2,3-ДФГ. Их форма не подходит для такой связи. Они просто хотят, чтобы эта молекула исчезла. Поэтому молекула не образует связи с гемоглобином F, в результате чего молекулы гемоглобина не теряют свой кислород так же легко, как гемоглобин А. Тогда зачем нам нужна здесь молекула 2,3-ДФГ? Что она делает? Интересно, что уровень 2,3-ДФГ повышается при недостатке кислорода, когда вам хронически не хватает кислорода. Хроническая нехватка кислорода возникает, в таких ситуациях, как например, когда вы на вершине Гималаев, находитесь высоко над уровнем моря, где чувствуете повышенное давление воздуха над уровнем моря, и при этом в самом воздухе мало кислорода. В такой ситуации ваши ткани испытывают хроническую нехватку кислорода. Ещё одна возможная ситуация — болезнь лёгких. Предположим, у вас проблема с лёгкими или болезнь лёгких. Хроническая болезнь лёгких, когда кислороду трудно попасть в кровь. В этой ситуации тканям также не хватает кислорода, поэтому в красных клетках крови повысится количество 2,3-ДФГ. Наконец, это может быть анемия, когда в организме мало циркулирующих красных клеток крови, поэтому при анемии ткани не получают так много кислорода, как им бы хотелось. Опять же в этой ситуации наблюдается увеличение числа 2,3-ДФГ. Поэтому основная функция 2,3-ДФГ — попытаться обеспечить выведение кислорода из гемоглобина, чтобы в случае когда тканям действительно нужен кислород, красные клетки крови могли его легко предоставить. Вернёмся к плоду. Мы видим, что гемоглобин плода отличается по своему типу от гемоглобина взрослого. Я нарисую график, и вы увидите разницу. Изображу кривую, но сначала маленький график. Эта ось парциального давления кислорода, и эта ось О2, или насыщения кислородом, показывающая, сколько пятен на гемоглобине он закрывает. Кривая будет идти вверх таким образом. Начнём с того, что гемоглобин матери или взрослый гемоглобин по причине кооперативности имеет S-образную форму. Мы говорили об этом ранее. Это будет гемоглобин взрослого, или гемоглобин типа А. Также у нас есть достаточно большое количество 2,3-ДФГ. Я изображу, как это могло бы выглядеть. Предположим, у нас вот такой, достаточно высокий уровень 2,3-ДФГ, что может быть вызвано одной из таких причин, как проживание в высокогорном районе, хроническая болезнь лёгких, постоянная анемия или любые другие ситуации. У нас высокий уровень 2,3-ДФГ, который превышает обычный. В этом случае произойдёт следующее: кривая будет выглядеть так. Кривая, показывающая связывание кислорода или насыщение кислородом, которая сдвигается вправо. Это называется сдвиг вправо, так как выглядит так, будто кривая просто подвинулась. И теперь в любой точке, я просто выберу любую точку, и ту же самую точку здесь. Это одно и то же парциальное давление кислорода, которое где-то здесь внизу. При том же самом парциальном давлении кислорода кривая направляется вниз. Это значит, что меньшее количество кислорода связано с гемоглобином в присутствии молекулы 2,3-ДФГ. И это верно, так как известно, что эта молекула помогает гемоглобину избавиться от кислорода. Что же произойдёт при противоположной ситуации, если я удлиню эту кривую? Предположим, это будет ситуация с низким уровнем 2,3-ДФГ. И это верно, так как при низком уровне 2,3-ДФГ, когда этих молекул нет, они не могут помочь кислороду отделиться, поэтому кислород остаётся с гемоглобином. И так, кислород останется с гемоглобином. При том же самом парциальном давлении кислорода большее количество гемоглобина будет связываться с кислородом. Вернёмся к фетальному гемоглобину. Мы говорили, что фетальный гемоглобин состоит из гамма-субъединиц, и гамма-субъединицы не любят молекулы 2,3-ДФГ, они с ними не связываются, а только говорят: «Уходи! Исчезни!» Учитывая, что я нарисовал эту кривую для низкого уровня 2,3-ДФГ, я мог бы просто стереть это и сказать, что это ситуация в плоде. Фетальный гемоглобин представлен этой кривой, так? Это кривая гемоглобина F. Мы видим, что кривая сдвинута влево. Основная причина этого в том, что, так как молекулы такого гемоглобина не образуют связи с 2,3-ДФГ, то эта кривая будет идти в противоположном от голубой кривой направлении. Теперь посмотрите на обе эти кривые, белую и красную. Белая кривая — кривая мамы, а красная — ребёнка. Если вы захотите найти на белой кривой точку, где почти половина молекул гемоглобина связалась с кислородом, то она может быть здесь. Это означает, что пройдено полпути, 50% всего пути. И так, 50% молекул гемоглобина связалось с кислородом при парциальном давлении кислорода, равном 27. Для плода та же самая точка 50% насыщения достигается при парциальном давлении, равном 20. Удивительно, что при более низком парциальном давлении кислорода ребёнок или плод способен выполнить ту же самую вещь, которую взрослый выполняет исключительно при большем количестве кислорода в окружающей среде или крови. Эти значения называются р50. Теперь, когда вы видите этот термин — р50, — вы понимаете что гемоглобин F р50 ниже гемоглобина А р50, так как фактически это 20 по сравнению с 27. Итак, мы узнали о двух способах: первый — количество гемоглобина или красных клеток крови у плода, второй — тип гемоглобина и то, что гемоглобин F образует более крепкую связь с кислородом при более низком давлении p50.

Читайте также:  Гемоглобин и соэ при раке легкого

Источник

бразование гемоглобина у плода и новорожденного. Показатели в норме

Образование гемоглобина у плода и новорожденного. Показатели в норме

Гемопоэз — процесс, который поддерживает продукцию гемопоэтических клеток крови на протяжении всей жизни. Основным местом гемопоэза у плода является печень, в то время как на протяжении всей постнатальной жизни — костный мозг.

Все гемопоэтические клетки образуются из полипотентных гемопоэтических стволовых клеток, которые являются ключевыми для нормального кровообразования; при их дефиците происходит недостаточность костного мозга, поскольку стволовые клетки требуются для продолжающегося замещения погибающих клеток.

Число полипотентных стволовых клеток остаётся относительно постоянным на протяжении всей жизни, поскольку пул стволовых клеток поддерживается балансом между пролиферацией стволовых клеток и дифференциацией в более зрелые гемопоэтические клетки всех гемопоэтических линий дифференцировки. Гемопоэтические стволовые клетки от здоровых доноров используются для лечения детей с недостаточностью костного мозга (трансплантация стволовых клеток).

Продукция гемоглобина у плода и новорождённого

Наиболее важное различие между гемопоэзом у плода по сравнению с постнатальной жизнью заключается в изменении принципа продукции Hb на каждой стадии развития. Первая формируемая глобиновая цепь — е-глобин, который практически немедленно дополняется а- и у-глобинами, которые экспрессируются с 4-5 нед гестации.

Фетальный Hb (HbF) состоит из 2а- и 2у-цепей (2а2у) и является основным Нb в течение внутриутробной жизни. У него более высокая аффинность к кислороду, чем у Hb взрослого человека (HbA), которая позволяет ему экстрагировать и удерживать кислород, что является преимуществом в относительно гипоксической окружающей среде плода.

Типы Hb у новорождённого, появившегося в срок: HbF, HbA и HbA2. HbF постепенно замещается HbA в течение первого года жизни. HbF и эмбриональный Hb в норме не определяются после периода младенчества, однако они продуцируются при врождённых нарушениях продукции Hb (гемоглобинопатиях) и определение их помогает в диагностике этих заболеваний.

Гематологические показатели при рождении и в первые несколько недель жизни:

• При рождении Hb у младенцев, рождённых в срок, высокий, 14-21,5 г/дл, для того чтобы компенсировать низкую концентрацию кислорода у плода. Hb падает в первые несколько недель в основном за счёт сниженного эритропоэза, уровень которого достигает самого низшего уровня вплоть до 10 г/дл в возрасте 2 мес. Нормальные гематологические показатели при рождении и в детстве представлены в приложении.

• У недоношенных младенцев отмечается более крутое снижение Hb — в среднем до 6,5-9,0 г/дл в первые 4-8 нед календарного возраста.

• Нормальный объём крови при рождении варьирует в зависимости от гестационного возраста. У здоровых младенцев средний объём крови — 80 мл/кг, у недоношенных — 100 мл/кг.

• Запасы железа, фолиевой кислоты и витамина В12 у доношенных и недоношенных младенцев достаточные при рождении. Однако у недоношенных младенцев запасы железа и фолиевой кислоты ниже и снижаются быстрее, что приводит к недостаточности после 2-4 мес, если не осуществляется рекомендованный ежедневный приём.

• Количество лейкоцитов у новорождённых выше, чем у старших детей (10-25х109/л).

• Количество тромбоцитов при рождении находится в пределах нормальных показателей взрослого возраста (150-400х109/л).

Гемоглобин при рождении:

• Концентрация Hb при рождении высокая (>14 г/дл), однако снижается до минимального уровня в возрасте 2 мес.

• HbF постепенно замещается НЬА в младенческом возрасте.

Примечание. Hb — гемоглобин; НbА — гемоглобин взрослого человека; HbF — фетальный гемоглобин.

Схема обмена гемоглобина и билирубина

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

— Также рекомендуем «Железодефицитная анемия у детей: клиника, диагностика, лечение»

Оглавление темы «Болезни крови детей»:

  1. Гистиоцитоз клеток Лангерганса у детей: клиника, диагностика, прогноз
  2. Прогноз при раке у ребенка. Рекомендации
  3. Образование гемоглобина у плода и новорожденного. Показатели в норме
  4. Железодефицитная анемия у детей: клиника, диагностика, лечение
  5. Аплазия эритроцитов у детей. Анемия Даймонда-Блекфана
  6. Гемолитическая анемия у детей: причины, диагностика
  7. Наследственный сфероцитоз у детей: причины, диагностика, лечение
  8. Дефицит глюкозо-6-фосфатдегидрогеназы (Г-6-ФД) у детей: причины, диагностика, лечение
  9. Серповидно-клеточная анемия (СКА) у детей: клиника, диагностика
  10. Лечение серповидно-клеточной анемии у детей. Рекомендации
Читайте также:  Если гемоглобин в норме а железа не хватает

Источник

Гематологические анализы: нормы и расшифровка результатов

Гематологические анализы — лабораторные тесты, которые предоставляют информацию о количественном и качественном составе крови. Они позволяют выявить многие негативные изменения в организме, сузить диагностический поиск, подобрать оптимальную схему лечения.

Виды гематологических исследований

Основным гематологическим исследованием является клинический анализ крови, результаты которого отражают общее состояние организма, обеспечивают врача информацией о характере гемопоэза (кроветворения). Анализ служит для диагностики воспалительных процессов, анемий, лейкемий и многих других патологических состояний.

Исследование назначается всем пациентам, обратившимся за специализированной медицинской помощью. Также оно проводится во время беременности, профилактических осмотров, при диспансеризации.

Биологическим материалом для исследования может служить капиллярная или венозная кровь. Клинический анализ крови состоит из множества тестов (от 8 до 30). Некоторые из них могут быть самостоятельными гематологическими исследованиями.

Подготовка к анализу

  1. За две недели до сдачи анализа важно отказаться от приема лекарственных средств. Если препараты жизненно необходимы, то условия коррекции лечения обсуждаются с врачом.
  2. За сутки до исследования нужно исключить из меню жирные и жареные продукты, отказаться от алкоголя, избегать физических и эмоциональных нагрузок.
  3. Накануне исследования ужин должен быть не позднее 22.00.
  4. Анализ сдается утром натощак. Перед исследованием нельзя курить, пить кофе, чай. Разрешается употреблять воду в объеме не более 0,5 л.

Основные показатели исследования

Рассмотрим главные параметры клинического анализа крови, их референтные значения и возможные причины отклонения от нормы.

Эритроциты

Самые многочисленные форменные элементы, в состав которых входит гемоглобин. Имеют дисковидную форму, сплющенную в центре. Благодаря такой конфигурации значительно увеличивается площадь клеток, что позволяет эритроцитам успешно выполнять свою первостепенную задачу — газообмен. Помимо этого, они участвуют в защите организма от токсинов, процессах свертывания крови и регуляции водно-солевого обмена. Непрерывное пополнение запасов этих форменных элементов критически важно для здоровья, так как без них организм начинает испытывать гипоксию — нехватку кислорода. На бланке с результатами анализа эритроциты обозначаются английской аббревиатурой RBC.

Низкий уровень эритроцитов наблюдается при анемиях (железодефицитная, В12-дефицитная), при повышенном разрушении эритроцитов в случае некоторых наследственных заболеваний (микросфероцитарные, овалоцитарные анемии), гемоглобинопатиях (патологии, при которых нарушается синтез гемоглобина), гипергидратации (избыточное содержании воды в организме), беременности, кровотечениях, пищевом дефиците.

Высокий показатель может быть следствием обезвоживания организма, эритремии (онкологическое заболевание кровеносной системы), патологий почек.

С референтными значениями содержания эритроцитов в крови вы можете ознакомиться в таблице.

Гемоглобин

Белок, содержащий железо. Способен обратимо соединяться с кислородом и доставлять его к тканям. Входит в состав эритроцитов, поэтому его уровень напрямую зависит от количества красных кровяных телец. Причины отклонения гемоглобина от референтных значений такие же, как и у эритроцитов. На бланке с результатами исследования гемоглобин обозначаются аббревиатурой HGB.

Нормальные значения гемоглобина у детей представлены в таблице (единицы измерения — г/л).

У взрослых нормы таковы:

  1. Мужчины — 130-160 г /л.
  2. Женщины — 120-140 г /л.

Цветовой показатель, эритроцитарные индексы

Цветовой показатель (ЦП) показывает относительную концентрацию гемоглобина в одном эритроците. Используется для выявления анемий и прочих патологий, связанных с нарушениями функционирования костного мозга. Как правило, в качестве нормы принимается диапазон 0,80-1,05 единицы.

ЦП определяется в рамках клинического анализа крови, проводимого без участия гематологических анализаторов. В настоящее время, когда практически все лаборатории оснащены современным оборудованием, ЦП постепенно теряет практическое значение. Вместо него определяются эритроцитарные индексы, которые обозначаются английскими аббревиатурами:

  1. MCV — средний объем эритроцитов. Высокие значения данного индекса — признак В12-дефицитной и фолиеводефицитной анемий, гипотиреоза, патологий печени. Низкие значения наблюдаются при железодефицитной анемии, сахарном диабете, патологиях почек, гемоглобинопатиях — наследственных заболеваниях крови, обусловленных нарушением структуры гемоглобина.
  1. RDW — распределение эритроцитов по величине. Отклонение этого параметра от нормы указывает на наличие эритроцитов в крови разных размеров. Высокое значение RDW мы можем наблюдать при некоторых анемиях, после переливания крови.

Возраст

Референтные значения, %

< полугода

14,9-18,7

> полугода

11,6-14,8

  1. MCH — среднее количество гемоглобина в эритроците. Норма MCH у взрослых находится в пределах 27-34 пикограмм. Высокие значения наблюдаются при В12-дефицитной анемии, анемии аутоиммунного характера, патологиях печени, гипотиреозе, алкогольной зависимости. Низкий показатель — признак железодефицитной анемии, анемии воспалительного ответа. У детей показатели нестабильны и могут меняться в большую или меньшую сторону за считанные дни, часы.
  2. MCHC — средняя концентрация гемоглобина в эритроците. Высокие значения наблюдаются при нехватке железа, анемии воспалительного ответа, гемоглобинопатиях.
Читайте также:  С каким гемоглобином можно делать операцию грудному ребенку 3 месяца

Лейкоциты и лейкоцитарная формула

Количество лейкоцитов (аббревиатура — WBC) служит индикатором многих патологических процессов. Высокий уровень этих форменных элементов чаще указывает на заболевания крови (лейкозы), вирусные и бактериальные инфекции, воспалительные процессы, интоксикации, аллергические реакции. Низкое содержание лейкоцитов наблюдается при ослабленном иммунитете, анемии, приеме антибактериальных, нестероидных противовоспалительных средств, при химио- и лучевой терапии.

Первостепенная функция лейкоцитов — иммунная. Однако они не смогли бы полноценно ее выполнять, если бы внутри своей группы не были бы разделены на несколько видов, у каждого из которых есть своя, особая задача.

Подсчет всех видов лейкоцитов называется лейкоцитарной формулой. Количество клеток каждого вида может быть приведено в процентах (относительное количество) или в единицах измерения (абсолютное количество). Данные лейкоцитарной формулы необходимы для дифференциальной диагностики некоторых заболеваний, определения стадии болезни, оценки эффективности лечения, прогноза исхода патологического процесса.

С референтными значениями нормального содержания лейкоцитов в крови и параметров лейкоцитарной формулы вы можете ознакомиться в таблице.

Рассмотрим основные причины отклонения параметров лейкоцитарной формулы от референтных значений:

  • нейтрофилы. Обладают бактерицидной и дезинтоксикационной функциями. В норме у взрослых преобладают именно эти клетки среди всех лейкоцитов. Подразделяются на 6 видов, в периферической крови больше всего содержится сегментоядерных нейтрофилов. Высокое содержание нейтрофилов наблюдается при большинстве бактериальных инфекций, воспалениях, некротических процессах, эндотоксикозе, интенсивных физических нагрузках, стрессах. Низкий уровень — при некоторых бактериальных и вирусных заболеваниях (брюшной тиф, туберкулез, вирус гриппа, кори). Кроме этого уровень нейтрофилов снижается при терапии антибактериальными, антигистаминными препаратами;
  • базофилы. Это вид лейкоцитов, которые присутствуют в крови здоровых людей в исключительно малых количествах. Основная роль базофилов — поддержание аллергической реакции, запускаемой тучными клетками. Их количество повышается при аллергических состояниях (в том числе на лекарственные средства), онкологии, некоторых инфекционных болезнях (грипп, ветряная оспа), отравлениях тяжелыми металлами;
  • эозинофилы. Основные функции этих клеток — борьба с паразитами и контроль аллергических реакций. Количество эозинофилов повышается в крови при аллергических состояниях (особенно при болезнях дыхательных путей — бронхиальная астма, аллергический ринит), кожных патологиях (атопический дерматит), паразитарных инвазиях, острых инфекциях, злокачественных процессах, ревматоидном артрите, дерматомиозите, при приеме лекарственных средств (глюкокортикоиды, антигистаминные препараты). Низкий уровень эозинофилов наблюдается при начальной стадии воспалений, гнойных инфекциях, интоксикации тяжелыми металлами;
  • лимфоциты. Лимфоциты относят к группе иммунокомпетентных клеток, т.е. это клетки, которые непосредственно обеспечивают выполнение функций иммунной системы. Одна из основных функций лимфоцитов — распознавание различных антигенов. Их количество повышается при большинстве вирусных инфекций, болезнях системы крови, отравлении сероуглеродом, мышьяком. Низкое значение — признак ослабленного иммунитета, почечной недостаточности, некоторых системных воспалительных заболеваний;
  • моноциты — крупные клетки, способные распознавать, захватывать и уничтожать бактерии, грибы. Рост количества этих клеток наблюдается при острых и вялотекущих воспалительных процессах, аутоиммунных патологиях, в период восстановления после инфекций. Низкое содержание моноцитов в крови — признак гнойных инфекций, апластической анемии, гемобластозов.

Тромбоциты

Тромбоциты (аббревиатура — PLT) представляют собой безъядерные кровяные тельца, образующиеся в костном мозге. Выполняют важные для организма функции:

  • создают тромбоцитарную пробку при травме кровеносного сосуда, которая закрывает место повреждения;
  • ускоряют ключевые реакции плазменного свертывания;
  • вырабатывают в поврежденные ткани специфические пептиды, которые активизируют процессы регенерации.

Тромбоцитопения (низкое содержание тромбоцитов) бывает при некоторых аутоиммунных заболеваниях (идиопатическая тромбоцитопеническая пурпура, системная красная волчанка, аутоиммунный тиреоидит и др.), наблюдается при гепатитах, циррозе печени, гипотиреозе, некоторых видах лейкозов, лимфомах, мегалобластной и апластической анемиях, алкогольной интоксикации, химио- и лучевой терапии.

Нормальные значения содержания тромбоцитов в крови представлены в таблице.

Гематокрит

Данный показатель определяет процентную долю содержания все форменных элементов (преимущественно эритроцитов) от общего объема биологической жидкости. На бланке с результатами исследования обозначается аббревиатурой HTC.

Высокое значение HTC наблюдается при обезвоживании, симптомах интоксикации (рвоте, диарее), сердечной и дыхательной недостаточности, перитоните, поликистозе почек. Низкое значение — признак анемий, избыточного содержания воды в организме.

Референтные значения гематокрита представлены в таблице.

Количество ретикулоцитов

Ретикулоциты (аббревиатура — RET) — молодые, незрелые формы эритроцитов, которые формируются в красном костном мозге. Время жизни ретикулоцитов 3-5 дней, половину этого времени они живут в костном мозге, а половину — в периферической крови. Их трансформация в эритроциты регулируется эритропоэтином (одним из гормонов почек). Показатель RET отражает активность эритропоэза — физиологического процесса формирования и дифференцировки красных кровяных клеток.

Определение RET необходимо в следующих ситуациях:

  • если требуется оценка состояния процессов кроветворения;
  • при обследовании пациентов, перенесших пересадку костного мозга, химиотерапию;
  • для оценки эффективности терапии железосодержащими препаратами, фолиевой кислотой, витамином В12, эритропоэтином.

Повышенное значение RET наблюдается при:

  • гемолитических анемиях (талассемия, микросфероцитарная анемия и др.). Ретикулоциты могут достигать 60 % и выше, сильно увеличиваясь при гемолитических кризах;
  • острой кровопотере. Показатель может превышать норму в 3-6 раз (на 3-5 день после кровопотери наблюдается ретикулоцитарный криз);
  • полицитемии — доброкачественном опухолевом процессе, поражающем систему крови;
  • метастазах опухолей в костный мозг;
  • гипоксии — низком уровне кислорода в организме;
  • малярии — остром инфекционном заболевании, при котором происходит повышенный гемолиз эритроцитов;
  • наличии в организме гемолитических ядов — веществ, разрушающих эритроциты. К подобным веществам относятся мышьяк, соединения свинца, нитриты, яды насекомых, змей.

Повышение ретикулоцитов позволяет заподозрить скрытое кровотечение (например, при язвенной болезни желудка, геморрое). Кроме этого, высокие значения RET наблюдается при эффективной терапии анемий железосодержащими препаратами, витамином В12. В первом случае повышение RET происходит через 1-2 недели после начала терапии, во втором — на 8-12 день.

Пониженные значения RET могут указывать на следующие нарушения:

  • апластическую анемию — патологию, при которой угнетается кроветворная функция костного мозга и образуется недостаточное количество всех видов форменных элементов;
  • патологии почек, снижающие выработку эритропоэтина,
  • аутоиммунные заболевания крови;
  • низкое содержание в организме витаминов B9, В12;
  • микседему — клинически выраженную форму гипотиреоза;
  • злокачественные очаги в костной ткани.

Референтные значения RET представлены в таблице.

Возраст

RET, %

От 2 месяцев до года

0,39-1,25

1-4 года

0.3-1,03

4-15 лет

0,3-0,98

Старше 15 лет

0,2-1,2

Скорость оседания эритроцитов

СОЭ — лабораторный тест, который позволяет оценить, насколько быстро кровь разделяется на плазму и эритроциты. Чаще всего используется для выявления воспалительных заболеваний и контроля их течения. На бланке исследования может обозначаться аббревиатурой ESR.

СОЭ может определяться методом Панченкова, Вестергрена, а также модифицированными методами. Референтные значения разных методик отличаются, что нужно учитывать при расшифровке результатов.

Патологические причины высокой СОЭ — острые и хронические воспалительные процессы, аутоиммунные патологии, анемии, ишемическая болезни сердца, опухолевые заболевания, физиологические — менструация, беременность, послеродовый период. Низкие значения наблюдаются при снижении мышечной массы, избыточном содержании воды в организме, приеме кортикостероидов.

Источник