Газообмен в легких гемоглобин

Гемоглобин: роль в газообмене и процессе дыхания

Газообмен в легких гемоглобин

Одним из самых сложных процессов, что происходят в организме человека, несомненно, является дыхание. И сложность эта не только в танце легких, благодаря которому человек получает кислород, но и в процессах, с помощью которых этот кислород проникает дальше, в ткани, где превращается в углекислый газ, что отправляется в обратное путешествие. О данных процессах и пойдет речь далее.

Итак, приступим. Человек делает вдох, иии… Далеко не весь кислород поступает в легкие, а затем и в кровь. Часть вдыхаемого воздуха остается в так называемом мертвом пространстве. Мертвое пространство, в свою очередь, делится на анатомическое (дыхательные пути), в котором остается около 30 % вдыхаемого воздуха, и функциональное (вентилируемые, но по каким-то причинам не перфузируемые альвеолы).

Ухудшение альвеолярного газообмена может происходить при неглубоком и частом дыхании (причиной может стать перелом ребер, паралич дыхательной мускулатуры различного генеза и др.), а также при увеличении мертвого пространства, вызванном разнообразными причинами (нарушение перфузии альвеол в результате воспалительных заболеваний легких, удаление доли или целого легкого и др.), при снижении скорости кровотока по альвеолярным капиллярам (ТЭЛА, инфаркт легкого), при наличии диффузионного барьера (отек легких) и в результате ослабления альвеолярной вентиляции при обтурации просвета бронха. Газообмен между легкими и кровью происходит путем диффузии в соответствии с законом Фика. В легочных капиллярах она происходит за счет разности парциальных давлений в альвеолах и эритроцитах.

В альвеолах парциальное давление кислорода значительно превышает таковое для углекислого газа и составляет примерно 13,3 кПа (100 мм рт. ст.) и 5,3 кПа (40 мм рт. ст.) соответственно. Альвеолы омываются приносимой легочными артериями венозной кровью, в которой соотношение парциальных давлений этих двух газов обратно пропорционально и составляет приблизительно 5,3 кПа (40 мм рт. ст.) для кислорода и 6,1 кПа (46 мм рт. ст.) для углекислого газа. В среднем разница парциальных давлений составляет около 8 кПа (60 мм рт. ст.) для кислорода и около 0,8 кПа для углекислого газа.

Как уже было сказано выше, кислород путем диффузии проникает в кровь легочных капилляров. Диффузионное расстояние для кислорода при этом составляет 1–2 мкм, то есть именно на такое расстояние он проникает внутрь капилляра. Обмен крови в легочном капилляре происходит примерно за 0,75 секунды, но этого времени хватает на то, чтобы парциальные давления в альвеолах и в крови пришли в равновесие.

Кровь, в которой показатели парциального давления для кислорода и углекислого газа примерно равны таковым в альвеолах, называется артериализированной. Однако за счет наличия в легких артериовенозных шунтов и притока венозной крови из бронхиальных вен такой она остается недолго. В результате парциальное давление кислорода в аорте составляет примерно 12,0 кПа (как уже было сказано выше, парциальное давление в артериализированной крови равно таковому в альвеолах и составляет 13,3 кПа), а давление углекислого газа меняется незначительно и не приводит к затруднению его диффузии из крови в альвеолы.

Но кислород непосредственно в ткани попадает лишь в крайне незначительных количествах: для свободного перемещения по организму ему необходим транспортер. Эту функцию выполняет содержащийся в эритроцитах белок — гемоглобин. Гемоглобин существует в оксигенированной и неоксигенированной формах. В дезокси-гемоглобине железо находится на уровне порфиринового кольца и стабилизируется электростатическими силами, что обеспечивает поддержание всей структуры. Появившись, кислород начинает «тянуть» за железо, которое переносится на проксимальный гистидин на другом конце полипептидной цепи и меняет структуру всего протеина.

В результате гемоглобин переходит в оксигенированную форму, альфа- и бета-цепи при этом поворачиваются относительно друг друга на 15 градусов, облегчая присоединение остальных молекул кислорода. В итоге каждый из четырех содержащихся в нем атомов двухвалентного железа обратимо связывается с молекулой кислорода, что превращает молекулу гемоглобина в оксигемоглобин. По сравнению с миоглобином гемоглобин имеет низкое сродство к кислороду, однако оно не статично. Так, миоглобин может связывать кислород только одним участком, поэтому кривая его связывания — гипербола. Кривая связывания гемоглобина с кислородом имеет S-образную форму, демонстрируя, что при его связывании с первой молекулой кислорода гемоглобин имеет очень низкое сродство к кислороду, но при связывании последующих молекул кислорода сродство остальных его субъединиц к нему значительно увеличивается и в конечном счете повышается примерно в 500 раз.

Газообмен в легких гемоглобин

При этом альфа-цепи связывают кислород легче, чем бета-цепи. Этот процесс назван кооперативным взаимодействием. По мере снижения парциального давления кислорода в крови происходит его высвобождение из гемоглобина и поступление в ткани. Например, парциальное давление кислорода в работающих мышцах составляет всего 26 мм рт. ст, и при прохождении эритроцитов через капилляры, кровоснабжающие мышцы, происходит высвобождение и поступление в мышечные клетки примерно ⅓ всего переносимого гемоглобином кислорода. При повышении температуры тела также возрастает потребность в кислороде, что, в свою очередь, стимулирует высвобождение и поступление его в ткани. При снижении температуры, напротив, развивается гипоксия тканей, способствующая компенсаторному увеличению сродства гемоглобина к кислороду.

Гемоглобин также осуществляет перенос от тканей к легким продуктов тканевого дыхания — углекислого газа и ионов водорода. В ходе окислительных процессов в клетке выделяется углекислый газ, в результате гидратации которого образуются ионы водорода, что, в свою очередь, приводит к снижению рН. Давно известно, что снижение рН и повышение концентрации углекислого газа в крови оказывает сильное влияние на способность гемоглобина связывать кислород.

Читайте также:  Микроэлемент входящий в состав гемоглобина

Газообмен в легких гемоглобин

В периферических сосудах показатели рН низкие, и по мере связывания гемоглобина с ионами водорода и углекислым газом происходит снижение его сродства к кислороду. Это влияние величины рН и концентрации углекислого газа на способность гемоглобина связывать кислород называют эффектом Бора.

Обратная ситуация имеет место в альвеолярных капиллярах, где присоединение кислорода к гемоглобину превращает тот в более сильную кислоту.

При этом сродство гемоглобина к углекислому газу снижается, а повышение кислотности гемоглобина приводит к высвобождению излишка ионов водорода и образованию в крови из бикарбоната угольной кислоты, которая затем распадается на воду и углекислый газ. В обоих случаях углекислый газ из крови поступает в альвеолы, а затем в атмосферу. Данный процесс назван эффектом Холдейна. Стоит отметить, что важную роль в образовании углекислого газа в эритроцитах играет ион хлора, поступающий в плазму крови в обмен на бикарбонат при участии белка-переносчика АЕ1. Данный процесс в англоязычной литературе получил название «Chloride shift» или «перенос Хамбургера».

На сродство гемоглобина к кислороду оказывает влияние и присутствующее в эритроцитах вещество, получившее название 2,3-бисфосфоглицерат (БФГ). Его образование — своего рода побочная реакция анаэробного гликолиза, происходящего в эритроцитах в ходе ферментативного превращения глюкозы в пируват под действием фермента бифосфоглицератмутазы. БФГ способен самостоятельно связываться с неоксигенированной формой гемоглобина, образуя солевой мостик между двумя его бета-субъединицами и снижая сродство к кислороду.

При этом гемоглобин способен связать только одну молекулу БФГ, а при присоединении кислорода БФГ вытесняется из полости. В обычных условиях в эритроцитах крови содержится достаточно большое количество БФГ, которое может увеличиваться в условиях гипоксии (например, у дайверов при погружении на глубину), а также при восхождении на большую высоту. В первые часы подъема концентрация БФГ в эритроцитах будет возрастать, а сродство кислороду снижаться. Но на большой высоте парциальное давление будет значительно ниже такового на уровне моря, а значит, оно снизится и в тканях. При этом БФГ будет облегчать передачу кислорода от гемоглобина к тканям.

Газообмен в легких гемоглобин

Некоторые вещества способны прочно связываться с гемоглобином или же вовсе менять его структуру. Одним из них является угарный газ, чье сродство к гемоглобину в 200 раз превышает таковое для кислорода. Отравления угарным газом часто происходят в помещениях с печным отоплением, при пожарах и авариях на производстве. Со временем кислород вытесняет угарный газ из гемоглобина, и в легких случаях пациенты помещаются под наблюдение и получают ингаляции с увлажненным кислородом. Необходимой мерой при тяжелых отравлениях угарным газом является переливание эритроцитарной массы.

К веществам, способным изменять структуру гемоглобина, относятся метгемоглобинобразователи — соединения, способные окислять двухвалентное железо в геме до трехвалентного. К ним относятся нитриты, нитраты, некоторые местные анестетики, аминофенолы, хлораты, примахин и некоторые сульфаниламиды. Состояние, характеризующееся появлением в крови окисленного гемоглобина, называют метгемоглобинемией. При высокой метгемоглобинемии капля крови, помещенная на фильтровальную бумагу, имеет характерный коричневый цвет, а при пропускании кислорода через пробирку с такой кровью ее цвет не меняется. Метгемоглобинемия выше 70 % от общего содержания гемоглобина часто приводит к гибели пациента еще до момента постановки диагноза.

Источники:

  1. Harrison’s hematology and oncology Longo, Dan L (Dan Louis), Third edition. New York : McGraw-Hill Education Medical, 2017.
  2. Наглядная физиология, С. Зильбернагль, А. Деспопулос, 2013.
  3. Ленинджер А. Основы биохимии: В 3-х т. Т. 1. /Д. Нельсон, М. Кокс ; Пер. с англ.-М.: БИНОМ: Лаборатория знаний, 2011.- 694 с.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник

Газообмен в легких и их строение — Семейная клиника ОПОРА г. Екатеринбург

Легкие человека – это парный губчатый орган. Строение легких изучалось еще в прошлом веке. Они состоят из правого и левого легкого, располагаются в грудной полости и заполняют собой ее основное пространство. Главное функциональное назначение легких – участие в газообмене человеческого организма с окружающей средой. Дыхательная функция осуществляется через дыхательные пути.

Легкие человека

Строение легких

Каждое легкое – это орган, имеющий форму слегка уплощенного полуконуса с более широким основанием (базисом) и округлой верхушкой (апексом). Каждое легкое покрыто своей оболочкой – легочной (висцеральной) плеврой, а от грудной клетки легкие отделены плеврой париетальной (пристеночной), которая служит внутренним покрытием грудной полости. И в легочной, и в пристеночной плеврах находятся железистые клетки, который производят особую плевральную жидкость. Эта жидкость находится между двумя этими плевральными оболочками (листами) и «смазывает» их, делая возможными дыхательные движения. Эти оболочки составляют плевральный мешок.

Строение органов дыханияПространство между листками называется плевральной полостью. При воспалении плевральной полости (плеврите) плевральная жидкость выделяется в недостаточном количестве, что приводит к трению между листками, и при дыхании возникают болезненные ощущения. Легкие в плевральных мешках разделены между собой средостением, между ними находятся сердце и крупные сосуды.

Правое и левое легкое при одинаковом функциональном назначении несколько различаются по форме и размеру (объему). Средний объем взрослого человека составляет около 3 тысяч кубических сантиметров.

Различия между легкими в форме и объеме обусловлены анатомическими особенностями. Основание (более широкая часть) лежит на диафрагме – мышце, которая разделяет грудную полость от брюшной, и состоит из двух куполов: правого и левого. Правый купол диафрагмы находится над печенью, над правой его долей, которая более объемистая, и в силу этого он выше левого купола. Поэтому лежащее на нем правое легкое шире и короче, но в среднем на 1/10 больше по объему, чем левое. Левое же обладает меньшим объемом вследствие того, что в левой части грудной полости находится сердце.

Читайте также:  Ребенку 1 год гемоглобин 115

Вернуться к оглавлению

Доли и ткани легких

Каждое легкое делится на доли и по сегментам. В правом три доли: верхняя, средняя и нижняя – и десять сегментов. Левое делится только на две доли: верхнюю и нижнюю – и состоит из девяти сегментов. Разделение на доли внешне обозначено пролеганием глубоких щелей: в правом их две, в левом только одна.

Сегменты легких на схемеСегменты, составляющие легочные доли, пронизаны бронхами, по которым поступает воздух из внешней среды. Сегментарное строение легких складывается из большого количества вторичных долей, которые складываются из ацинусов (в переводе с латыни «гроздь»). В каждой вторичной доле их находится от трех до пяти. Ацинусы представляют собой структуры очень маленького размера, в них и происходит процесс газообмена: кровь насыщается кислородом, поступающим в легкие с вдыхаемым воздухом, и отдает СО2, который при выдохе выводится наружу. Ацинусы являются функциональной единицей легких.

В строение легких входят следующие ткани:

  1. Висцеральная (легочная) плевра, отдельно окутывающая левое и правое легкое и обеспечивающая, благодаря выделяемой плевральной жидкости, плавное скольжение легкого при дыхательных движениях по пристеночной плевре внутри грудной полости.
  2. Строма (остов легких, складывающийся из перегородок, состоящих из соединительной ткани). Строма состоит из тонкой соединительной ткани, разделяющей легкие на легочные дольки. Внутри этих перегородок находится вся легочная «инфраструктура»: нервные волокна, сосуды кровеносной и лимфатической системы и пути, по которым входит и выходит воздух.
  3. Паренхима (мягкая ткань из клеток с тонкой оболочкой). Легочная паренхима представляет собой совокупность всех внутрилегочных бронхов и бронхиол, легочных долек, состоящих из ацинусов, альвеол и альвеолярных ходов.

Вернуться к оглавлению

Строение бронхов и сосудов

Схема кровообращения в легкихБронхиальное дерево – это своеобразная разветвленная трубчатая вентиляционная система организма, начинающаяся в трахее, а заканчивающаяся в альвеолах. Визуально строение бронхов действительно напоминает дерево, где от основного ствола-трахеи расходятся главные бронхи, левый и правый, идущие соответственно в левое и правое легкие. Затем, согласно строению легких, бронхи разветвляются на долевые, сегментарные, субсегментарные и дольковые. Более тонкими веточками бронхиального дерева являются бронхиолы, которые делятся на концевые настоящие и концевые альвеолярные. В структуру бронхиального дерева входят альвеолярные ходы, мешочки и сами альвеолы. От наибольшего диаметра в точке бифуркации (разделения на две ветви) в трахее далее эти вентиляционные трубки постепенно сужаются, пока не становятся микроскопически тонкими в альвеолярных ходах.

Альвеолы, находящиеся в конце тончайшего дыхательного канала крошечные тонкостенные шарики с воздухом внутри, в совокупности составляют альвеолярный мешок. Именно в этом участке легких и происходит газообмен. Стенка альвеолы – это однослойная клеточная оболочка, обернутая тканевым слоем, функции которого – поддержка клеток и их отделение от альвеол.

Мембранная оболочка отделяет альвеолы и мельчайшие кровеносные сосуды – капилляры. Между внутренними оболочками альвеол и капилляров расстояние всего полтысячной доли миллиметра. Один кровеносный капилляр соседствует сразу с несколькими альвеолами.

Строение бронхов и сосудов в легкихУ взрослого человека диаметр альвеолы составляет одну четвертую миллиметра. Эти микроскопические шарики плотно прижаты друг к другу.

Капилляры – это наименьшие кровеносные сосуды легких. В этом парном органе проходят сосуды обоих кругов кровообращения, малого и большого. В малом круге ответвления легочной артерии транспортируют венозную кровь, а по притокам вен артериальная кровь попадает в левое предсердие из легких. Бронхиальные артерии снабжают всем необходимым бронхи и легочную паренхиму.

Легкие пронизаны разветвленными сетями лимфатических сосудов.

Вернуться к оглавлению

Схема газообмена и здоровье легких

Газообмен – жизненно важный процесс, который происходит непрерывно. Клетки человеческого организма, не получая с кровью кислород, умирают. Особенно быстро сказывается кислородное голодание на клетках головного мозга. Если эритроциты не могут избавиться от углекислого газа, в организме развивается интоксикация.

Поэтому кислород и углекислый газ постоянно находятся в кровотоке человека, их молекулы сливаются с гемоглобином в составе эритроцитов и таким образом путешествуют по организму, всем его тканям и органам, в том числе попадают в легкие. Здесь углекислый газ высвобождается из крови и попадает в альвеолы, из которых идет дальше по дыхательным путям, пока не выходит наружу.

Газообмен в легких и тканяхВ эритроцитах освободившееся от углекислого газа место занимает кислород, который после вдоха свежего воздуха попадает в легкие и доходит до альвеол, где и происходит газообмен.

По сосудам кровь, содержащая кислород, из легких транспортируется в сердце, из которого уже доставляется в сосуды более мелкие, пока не доходит до капилляров. Там тоже происходит обмен: нужный тканям кислород покидает эритроциты, а вместо него к красным кровяным тельцам присоединяется углекислый газ. После чего кровь снова устремляется к легким, чтобы обменять углекислый газ на новую порцию кислорода. так выглядит схема газообмена.

Роль легких в нормальной жизнедеятельности человека бесценна, поэтому о их здоровье нужно заботиться.

Кроме того, патологические процессы в этом органе могут свидетельствовать о наличии серьезных заболеваний. Так, хронические пневмонии довольно часто сопровождают иммунодефицитные состояния, а острая пневмония у новорожденных – часть клинической картины при первичном иммунодефиците.

Чтобы здоровый организм постоянно получал достаточное количество кислорода, нужно давать ему физические нагрузки, постоянно бывать на свежем воздухе. Хорошая профилактика легочных заболеваний – плавание. У людей, занимающихся этим видом спорта, объем легких составляет почти 5 литров, против 3 литров у обычного человека.

Читайте также:  Овес при низком гемоглобине

Курение убивает легочный эпителий и сокращает жизнь человека в среднем на десять лет.

Источник

родство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Оглавление темы «Вентиляция легких. Перфузия легких кровью.»:

1. Вентиляция легких. Вентиляция кровью легких. Физиологическое мертвое пространство. Альвеолярная вентиляция.

2. Перфузия легких кровью. Влияние гравитации на вентиляцию легких. Влияние гравитации на перфузию легких кровью.

3. Коэффициент вентиляционно-перфузионных отношений в легких. Газообмен в легких.

4. Состав альвеолярного воздуха. Газовый состав альвеолярного воздуха.

5. Напряжение газов в крови капилляров легких. Скорость диффузии кислорода и углекислого газа в легких. Уравнение Фика.

6. Транспорт газов кровью. Транспорт кислорода. Кислородная емкость гемоглобина.

7. Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

8. Углекислый газ. Транспорт углекислого газа.

9. Роль эритроцитов в транспорте углекислого газа. Эффект Холдена..

10. Регуляция дыхания. Регуляция вентиляции легких.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Молекула гемоглобина может находиться в двух формах — напряженной и расслабленной. Расслабленная форма гемоглобина имеет свойство насыщаться кислородом в 70 раз быстрее, чем напряженная. Изменение фракций напряженной и расслабленной формы в общем количестве гемоглобина в крови обусловливает S-образный вид кривой диссоциации оксигемоглобина, а следовательно, так называемое сродство гемоглобина к кислороду. Если вероятность перехода от напряженной формы гемоглобина к расслабленной больше, то возрастает сродство гемоглобина к кислороду, и наоборот. Вероятность образования указанных фракций гемоглобина изменяется в большую или меньшую сторону под влиянием нескольких факторов.

Основной фактор — это связывание кислорода с геминовой фуппой молекулы гемоглобина. При этом чем больше геминовых фупп гемоглобина связывают кислород в эритроцитах, тем более легким становится переход молекулы гемоглобина к расслабленной форме и тем выше их сродство к кислороду. Поэтому при низком Р02, что имеет место в метаболически активных тканях, сродство гемоглобина к кислороду ниже, а при высоком Р02 — выше. Как только гемоглобин захватывает кислород, повышается его сродство к кислороду и молекула гемоглобина становится насыщенной при связывании с четырьмя молекулами кислорода.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Когда эритроциты, содержащие гемоглобин, достигают тканей, то кислород из эритроцитов диффундирует в клетки. В мышцах он поступает в своеобразного депо кислорода — в молекулы миоглобина, из которого кислород используется в биологическом окислении мышц.

Диффузия кислорода из гемоглобина эритроцитов в ткани обусловлена низким Р02 в тканях — 35 мм рт. ст. Внутри клеток тканей напряжение кислорода, необходимое для поддержания нормального метаболизма, составляет еще меньшую величину — не более 1 кПа. Поэтому кислород путем диффузии из капилляров достигает метаболически активных клеток. Некоторые ткани приспособлены к низкому содержанию Р02 в капиллярах крови, что компенсируется высокой плотностью капилляров на единицу объема тканей. Например, в скелетной и сердечной мышцах Р02 в капиллярах может снизиться чрезвычайно быстро во время сокращения. В мышечных клетках содержится белок миоглобин, который имеет более высокое сродство к кислороду, чем гемоглобин. Миоглобин интенсивно насыщается кислородом и способствует его диффузии из крови в скелетную и сердечную мышцы, где он обусловливает процессы биологического окисления. Эти ткани способны экстрагировать до 70 % кислорода из крови, проходящей через них, что обусловлено снижением сродства гемоглобина к кислороду под влиянием температуры тканей и рН.

Эффект рН и температуры на сродство гемоглобина к кислороду. Молекулы гемоглобина способны реагировать с ионами водорода, в результате этой реакции происходит снижение сродства гемоглобина к кислороду. При насыщении гемоглобина менее 100 % низкое рН понижает связывание кислорода с гемоглобином — кривая диссоциации оксигемоглобина смещается вправо по оси х. Это изменение свойства гемоглобина под влиянием ионов водорода называется эффектом Бора. Метаболически активные ткани продуцируют кислоты, такую как молочная, и С02. Если рН плазмы крови снижается от 7,4 в норме до 7,2, что имеет место при сокращении мыщц, то концентрация кислорода в ней будет возрастать вследствие эффекта Бора. Например, при постоянном рН 7,4 кровь отдавала бы порядка 45 % кислорода, т. е. насыщение гемоглобина кислородом снижалось до 55 %. Однако когда рН снижается до 7,2, кривая диссоциации смещается по оси х вправо. В результате насыщение гемоглобина кислородом падает до 40 %, т. е. кровь может отдавать в тканях до 60 % кислорода, что на 1/з больше, чем при постоянном рН.

Сродство гемоглобина к кислороду. Изменение сродства гемоглобина к кислороду. Эффект Бора.

Метаболически активные ткани повышают продукцию тепла. Повышение температуры тканей при физической работе изменяет соотношение фракций гемоглобина в эритроцитах и вызывает смещение кривой диссоциации оксигемоглобина вправо вдоль оси х. В результате большее количество кислорода будет освобождаться из гемоглобина эритроцитов и поступать в ткани.

Эффект 2,3-дифосфоглицерата (2,3-ДФГ) на сродство гемоглобина к кислороду. При некоторых физиологических состояниях, например при понижении Р02 в крови ниже нормы (гипоксия) в результате пребывания человека на большой высоте над уровнем моря, снабжение тканей кислородом становится недостаточным. При гипоксии может понижаться сродство гемоглобина к кислороду вследствие увеличения содержания в эритроцитах 2,3-ДФГ. В отличие от эффекта Бора, уменьшение сродства гемоглобина к кислороду под влиянием 2,3-ДФГ не является обратимым в капиллярах легких. Однако при движении крови через капилляры легких эффект 2,3-ДФГ на снижение образования оксигемоглобина в эритроцитах (плоская часть кривой диссоциации оксигемоглобина) выражен в меньшей степени, чем отдача кислорода под влиянием 2,3-ДФГ в тканях (наклонная часть кривой), что обусловливает нормальное кислородное снабжение тканей.

— Также рекомендуем «Углекислый газ. Транспорт углекислого газа.»

Источник