Гемоглобин это фотосинтетический пигмент
Содержание статьи
игменты фотосинтеза. Хлорофиллы. Каротиноиды.
Пигменты фотосинтеза. Хлорофиллы. Каротиноиды.Пигменты фотосинтеза у высших растений подразделяются на два класса: хлорофиллы и кароти-ноиды. Основное назначение пигментов — поглощать световую энергию, превращая ее затем в химическую энергию. Пигменты располагаются на мембранах хлоропластов (тилакоидах), а хлоропласты в клетке обычно ориентируются таким образом, чтобы мембраны находились под прямым углом к источнику света (для максимального поглощения света). ХлорофиллыХлорофиллы поглощают в основном красный и сине-фиолетовый свет, зеленый свет ими отражается, что и придает растениям специфическую зеленую окраску, если она не маскируется другими пигментами. На рисунке приведены спектры поглощения хлорофиллов а и h в сравнении с каротиноидами. В состав молекулы хлорофилла входит плоская голова, поглощающая свет, в центре которой расположен атом магния. Этим можно объяснить, почему растения нуждаются в магнии и почему дефицит магния приводит к уменьшению образования хлорофилла и пожелтению листьев растения. Молекула хлорофилла включаете себя еще и длинный гидрофобный (отталкивающий воду) углеводородный хвост. Внутренние мембраны также гидрофобны, поэтому хвосты «забрасываются» внутрь тилаковдных мембран и служат своеобразным якорем. Гидрофильные головы располагаются в плоскости мембранных поверхностей подобно солнечным батареям. У различных хлорофиллов к головам прикреплены различные боковые цепи, что приводит к изменению их спектров поглощения, увеличивая диапазон длин волн поглощаемого света. Хлорофилл а — наиболее часто встречающийся пигмент фотосинтеза. Он существует в нескольких формах, в зависимости от расположения в мембране. Каждая форма едва отличается по положению пика адсорбции в красной области; например, значения максимума могут составлять 670, 680, 690 или 700 нм. КаротиноидыКаротиноиды — это желтые, оранжевые, красные или коричневые пигменты, сильно поглощающие в сине-фиолетовой области. Они называются вспомогательными пигментами, поскольку поглощенную ими световую энергию они переносят на хлорофилл. В спектре поглощения каротиноидов обнаруживаются три пика в сине-фиолетовой области. Помимо своей функции как вспомогательных пигментов каротиноиды защищают хлорофиллы от избытка света и от окисления кислородом, образующимся в процессе фотосинтеза. Они хорошо замаскированы зелеными хлорофиллами, но становятся видны в листьях до начала листопада, поскольку хлорофиллы разрушаются первыми. Каротиноиды обнаружены в некоторых цветках и фруктах, у которых яркая окраска привлекает насекомых, птиц и млекопитающих, тем самым обеспечивая успешное опыление и распространение семян; к примеру, красный цвет кожицы у томатов обусловлен наличием в ней каротинов. Каротиноиды бывают двух типов: каротины и ксантофиллы. Самым распространенным и важным среди каротинов является (J-каротин, который знаком нам как оранжевый пигмент моркови. У позвоночных животных в процессе пищеварения этот пигмент расщепляется на две молекулы витамина А. — Также рекомендуем «Спектры поглощения и спектры действия. Возбуждение хлорофилла светом.» Оглавление темы «Фотосинтез.»: |
Источник
Гемоглобин и хлорофилл сходства, дефицит железа
Сегодня поговорим о хлорофилле, гемоглобине, железе, крови и какая связь между хлорофиллом и гемоглобином в процессе кроветворения.
Эритроциты и круговорот железа
Сразу нужно дать объяснение, что эритроциты — это такие же форменные элементы как лимфоциты, лейкоциты и прочие. Живут эритроциты в плазме крови 120 — 130 дней и погибают. Место образование эритроцитов — красный костный мозг, ребра, позвоночник. Гемоглобин в свою очередь неотъемлемая часть эритроцита, который содержит атомы железа в своем составе.
Каждый день погибает и образуются новых около 3 млрд эритроцитов. Возникает вопрос: куда девается железо от погибших эритроцитов. Конечно часть выводится из организма, но большая перераспределяется. Ведь организм — это уникальная система, пытающаяся всегда сэкономить элементы питания и другие составляющие, идущая путем наименьшего сопротивления.
Как построить за день три миллиарда
клеток-эритроцитов
с нуля? Печень, например, повторно разбирает и собирает вновь белки плазмы крови — тем самым происходит белковый круговорот в организме. И таких круговоротов много в организме, не только белковый. Похожая ситуация и с железом.
Функция гемоглобина
Поскольку в эритроцитах присутствует в большом количестве гемоглобин, то цвет его
ярко-красный
(гемоглобин — железосодержащий белок, от сюда и красный цвет). Гемоглобин — неотъемлемая часть эритроцита, входящая в его состав. Задача гемоглобина — связать, удержать и передать в каждую клетку нашего организма с потоком крови критически важный кислород и забрать продукты метаболизма, а главное — углекислый газ и утилизировать его из клетки.
Увеличение числа эритроцитов в крови свидетельствует либо о серьезном обезвоживании организма или говорит о хроническом лейкозе.
Снижение количества эритроцитов в крови от нормы говорит об анемии, которая в долгосрочной перспективе приводит к серьезным болезням.
Сходства хлорофилл и гемоглобин
Гемоглобин — гемо (
железо-составляющая
) и глобин (белок), в молекуле гемоглобина четыре гемо, точнее — протомеров (они соединены между собой водородными связями). То есть определённое количество белка и четыре атома железа. Гемоглобин — это почти точная копия хлорофилла, а хлорофилл очень близок к цианокобаламину.
Хлорофилл входит в состав хлоропластов (зеленый пигмент благодаря которому происходит фотосинтез — образование органических веществ на свету).
Чем хлорофилл отличается от гемоглобина
Структура хлорофилла и гемоглобина идентичны, но только в гемоглобине 4 атома железа, а в хлорофилле — 4 атома магния, разницы боле никакой. С этим связано и отличие в цвете. Поэтому, всё что зеленое (из растений) — содержит большое количество хлорофилла.
Хлорофилл повышает гемоглобин
В чем же суть, спросите вы, поэтому давайте подойдем ближе к главному моменту.
В костном мозге происходит не образование эритроцитов, а сборка гемоглобина, который входит в состав эритроцитов. А происходит это очень интересным способом, если упросить:
К сборочному цеху подходит 4 атома железа (свободноплавающие в плазме крови), подходит хлорофилл и удаляются 4 атома магния, на чье место становятся атомы железа, а происходит этот процесс с посредничеством 4 атомов кобальта, благодаря цианокобаламину (одна из форм витамина B12).
Таким образом из хлорофилла образуется наш собственный гемоглобин. Это не значит, что при высоком гемоглобине нельзя пить хлорофилл — такой вывод ошибочный. Хлорофилл нормализует уровень выработки гемоглобина если это необходимо. В ином случае Хлорофилл будет использован для других нужд организма!
Это еще одно подтверждение того, что все пищевые цепи (сети) работают на первичной органической биомассе и продуценты (растения) в экологическом плане являются основой все пищевой цепи. Поэтому без растительной зеленной пищи прожить долгую качественную жизнь практически не реально.
Польза Хлорофилла
Хлорофилл — это энергия, строительный материал, функции кроветворения. Хлорофилл — это основа жизни и в растительном и в животном царстве.
Для здоровой крови категорически необходим хлорофилл, в достаточном количестве. А учитывая, что он участвует не только в создании гемоглобина и расходуется на разные нужды организма, восполнить его только из зелени очень трудно. Вопрос качества современных продуктов, содержания в них полезных, нужных нам веществ — отдельная тема. Особенно это касается зелени (не дикоросов). Так вот на помощь приходит уже готовый экстракт хлорофилла в жидкой (легкоусвояемой) форме.
Фотосинтез и биосинтез белка — это два главных процесса образования необходимого органического сырья для построения и функционирования всех организмов на нашей планете. Периодически всем нужно делать общий анализ крови что бы проконтролировать ситуацию и увидеть состояние своего организма.
Дефицит железа
При проблемах с вязанных с нехваткой железа в организме, железодефицитной анемии, недостойное количество эритроцитов в крови — в обязательном порядке нужно принимать Хлорофилл. А также сдать анализ на наличие паразитов. Если конечно у вас не пулевое ранение или открывшаяся язва, или менструация с обильными кровопотерями. В других случаях низкий уровень железа — это показатель наличия в организме паразитов. Например, аскариды, находясь в кишечнике продырявливают стенки, и сосут кровь. Одна аскарида может в день высосать 30 мл крови.
Соответственно необходимо исключительно всем проходит два раза в год антипаразитарную программу, потому что полностью защититься от различных паразитов практически невозможно.
Какие еще могут быть причины дефицита железа
- Может быть дефицит B12, а вы уже поняли какая значимость этого витамина и что он принимает участие в регулярном жизненно важном процессе создания гемоглобина. При анализе на B12 обязательно сдавайте на гомоцистеин и если по результатам анализа гомоцистеин выше нормы, то у вас точно дефицит B12. Даже если анализ на сам витамин в норме;
- Дефицит железа в питании;
- Дисбактериоз или синдром дырявого кишечника;
- И как уже было сказано — паразиты, зачастую кровососущие, но могут быть лямблии и другие простейшие организмы;
- Темный цвет кала может говорить о высоком содержании железа на выходе из организма, в чем причина такого нарушении нужно разбираться.
Решение
Принимать Жидкий Хлорофилл вместе с Железо Хелат, что улучшит усвоение и работу этих двух продуктов. При наличии паразитов (анализ нужно делать по крови, кал — не показывает реальной картины) обратите внимание обязательно на Коллоидное Серебро и Противопаразитарный набор, который нужно дополнить другими продуктами. При Дисбактериозе — обязательно Бифидофилус, при проблемах ЖКТ — обязателен курс реабилитации.
Источник
Разница между хлорофиллом и гемоглобином | В чём разница?
Основное различие между хлорофиллом и гемоглобином заключается в том, что хлорофилл является фотосинтетическим пигментом, присутствующим в растениях и других фотосинтезирующих организмах, в то время как гемоглобин является дыхательным пигментом, присутствующим в крови человека.
Биологические пигменты необходимы для жизненных процессов. Они имеют характерный цвет. Некоторые из них зеленого цвета, а некоторые красного, оранжевого и желтого цвета. Хлорофилл является основным пигментом растительной жизни. Требуется производство продуктов в организме с помощью фотосинтеза. С другой стороны, гемоглобин — красный пигмент, присутствующий в крови человека. Это дыхательный пигмент, который транспортирует кислород и питательные вещества по всему организму человека. Хотя хлорофилл и гемоглобин присутствуют в двух разных типах организмов, они имеют сходную структуру. Таким образом, они состоят из углерода, водорода, кислорода и азота. Однако центральным элементом является значительная разница между хлорофиллом и гемоглобином. Магний является центральным элементом хлорофилла, а железо — центральным элементом гемоглобина.
Содержание
- Обзор и основные отличия
- Что такое хлорофилл
- Что такое гемоглобин
- Сходство между хлорофиллом и гемоглобином
- Сравнение между собой — хлорофилл и гемоглобин
- Резюме
Что такое хлорофилл?
Хлорофилл является основным пигментом фотосинтезирующих организмов, включая растения и водоросли . Это пигмент зеленого цвета, способный захватывать энергию света от солнечного света. На самом деле, хлорофилл относится к семейству растительных пигментов. Он состоит из нескольких хлорофилловых пигментов, но хлорофилл а и b являются общими пигментами.

Кроме того, молекула хлорофилла состоит из углерода, водорода, азота и кислорода. Следовательно, эти элементы построены вокруг центрального металлического иона магния. Хлорофиллы поглощают волны электромагнитного излучения желтого и синего цвета и отражают зеленый цвет. Следовательно, это причина, почему они видны в зеленом цвете.
Что такое гемоглобин?
Гемоглобин — это железосодержащий пигмент, присутствующий в эритроцитах позвоночных, который транспортирует кислород из легких в другие части тела. Следовательно, он считает дыхательным пигментом. Кроме того, это красный пигмент, который имеет структуру, аналогичную структуре молекулы хлорофилла.

Подобно хлорофиллу, гемоглобин также состоит из C, H, N и O. Но он содержит Fe в качестве центрального иона. Он не только транспортирует кислород, но также транспортирует несколько других газов, таких как диоксид углерода, оксид азота и т. Д.
Каковы сходства между хлорофиллом и гемоглобином?
- Хлорофилл и гемоглобин являются двумя природными пигментами.
- У них похожая структура.
- Кроме того, оба обладают четырьмя пиррольными кольцами.
- Кроме того, они состоят из одинаковых элементов; С, Н, О и Н.
- Более того, оба необходимы для жизненных процессов.
- Кроме того, процессы с участием хлорофилла и гемоглобина обрабатывают кислород и углекислый газ.
В чем разница между хлорофиллом и гемоглобином?
Хлорофилл — это пигмент зеленого цвета, присутствующий в фотосинтезирующих организмах, таких как растения, водоросли и цианобактерии. С другой стороны, гемоглобин является респираторным пигментом, присутствующим в эритроцитах позвоночных. Таким образом, это ключевое различие между хлорофиллом и гемоглобином. Еще одно различие между хлорофиллом и гемоглобином — центральный ион, в котором строятся другие элементы. Хлорофилл содержит ион магния, а гемоглобин — ион железа.
Резюме — Хлорофилл против гемоглобина
Хлорофилл и гемоглобин являются двумя важными пигментами, необходимыми для жизнедеятельности растений и животных соответственно. Фотосинтетические организмы, такие как растения, водоросли и цианобактерии, обладают хлорофиллами, а эритроциты позвоночных — гемоглобином. Хотя они присутствуют в разных организмах, их структуры почти одинаковы, так как они имеют похожее пиррольное кольцо. Но они отличаются от центрального иона. Хлорофилл содержит магний, а гемоглобин — железо. Кроме того, их функции разные. Хлорофилл поглощает энергию солнечного света для фотосинтеза, а гемоглобин переносит кислород из легких в другие части тела. Следовательно, это суммирует разницу между хлорофиллом и гемоглобином.
Источник
9.3.2. отосинтетические пигменты [1990 Грин Н., Стаут У., Тейлор Д.
9.3.2. Фотосинтетические пигменты
Фотосинтетические пигменты высших растений делятся на две группы — хлорофиллы и каротиноиды. Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света. В табл. 9.4 перечислены пигменты, характерные для различных групп растений.
Таблица 9.4. Главные фотосинтетические пигменты, их цвет и распространение
Хлорофиллы
Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. На рис. 9.9 показаны спектры поглощения хлорофиллов a и b — для сравнения — спектр каротиноидов.
Рис. 9.9. Спектры поглощения хлорофиллов a и b и каротиноидов
Для хлорофиллов характерно наличие порфиринового кольца (рис. 9.10). Такая же структура имеется и в других важных биологических соединениях — в геме гемоглобина, миоглобина и цитохромов. Порфириновое кольцо — это плоская квадратная структура, состоящая из четырех меньших колец (I-IV), каждое из которых содержит по одному атому азота, способному взаимодействовать с атомами металлов; в хлорофиллах это магний, в геме-железо. К такой «голове» присоединен длинный углеводородный «хвост» — сложноэфирная связь образуется между спиртовой группой (-ОН) на конце фитола и карбоксильной группой (-СООН) на самой голове. У разных хлорофиллов разные боковые цепи, и это несколько изменяет их спектры поглощения.
Рис. 9.10. Строение хлорофилла. Координационная связь: Х-СН3 — у хлорофилла а; -СНО — у хлорофилла b
Связь такой структуры с функцией можно описать следующим образом:
а) длинный хвост растворим в липидах (т. е. он гидрофобный) и таким образом удерживает молекулу в мембране тилакоида;
б) голова гидрофильная (т. е. обладает сродством к воде), и поэтому она обычно лежит на той поверхности мембраны, которая обращена к водной среде стромы;
в) для лучшего поглощения света плоскость головы расположена параллельно плоскости мембраны;
г) модификация боковых групп на голове приводит к изменениям в спектре поглощения, в результате чего меняется и количество поглощаемой энергии света;
д) поглощение световой энергии головой приводит к эмиссии электронов.
Хлорофилл а — фотосинтетический пигмент, представленный в наибольшем количестве; это единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.
9.6. Чем отличается спектр поглощения хлорофилла а от спектра поглощения хлорофилла b?
Каротиноиды
Каротиноиды — это желтые, оранжевые, красные или коричневые пигменты, которые сильно поглощают в сине-фиолетовой области. Обычно они замаскированы зелеными хлорофиллами, но хорошо выявляются перед листопадом, так как хлорофиллы в листьях распадаются первыми. Каротиноиды содержатся также в хромопластах некоторых цветков и плодов, яркая окраска которых служит для привлечения насекомых, птиц и других животных, участвующих в опылении цветков или распространении семян; например, красный цвет кожицы помидоров обусловлен присутствием одного из каротинов — ликопина.
Каротиноиды имеют три максимума поглощения в сине-фиолетовой области спектра (рис. 9.9); они не только функционируют как дополнительные пигменты, но и защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.
Каротиноиды бывают двух типов — каротины и ксантофиллы. Каротины — это углеводороды, большую часть которых составляют тетратерпены (С40-соединения). Самым распространенным и самым важным из них является β-каротин (рис. 9.11), который знаком всем как оранжевый пигмент моркови. Позвоночные животные способны в процессе пищеварения расщеплять молекулу каротина надвое с образованием двух молекул витамина А. Ксантофиллы по химическому строению очень сходны с каротинами и отличаются от них только тем, что содержат кислород.
Рис. 9.11. Строение β-каротина
Спектры поглощения и спектры действия
При изучении какого-либо процесса, активируемого светом, в частности фотосинтеза, очень важно знать спектр действия для данного процесса — тогда можно попытаться идентифицировать пигменты, которые в нем участвуют. Спектр действия — это график, показывающий эффективность стимулирующего действия света с различной длиной волны на исследуемый процесс, в нашем случае — на фотосинтез; эту эффективность можно оценивать, например, по образованию кислорода. Спектр поглощения — это график, отображающий относительное поглощение света с различной длиной волны тем или иным пигментом. Спектр действия для фотосинтеза показан на рис. 9.12, вместе с объединенным спектром поглощения всех фотосинтетических пигментов. Обратите внимание на большое сходство этих двух графиков: оно свидетельствует о том, что именно пигменты, и в частности хлорофилл, ответственны за поглощение света при фотосинтезе.
Рис. 9.12. Сравнение спектра действия фотосинтеза со спектром поглощения фотосинтетических пигментов
Возбуждение пигментов светом
Пигменты — это химические соединения, которые поглощают видимый свет, что приводит к переходу некоторых электронов в возбужденное состояние, т. е. эти электроны поглощают энергию. Чем меньше длина волны, тем выше энергия света и тем больше его способность переводить электроны в возбужденное состояние. Такое состояние обычно неустойчиво, и вскоре молекула возвращается в свое основное состояние (т. е. исходное низкоэнергетическое состояние), теряя при этом энергию возбуждения. Эта энергия может использоваться разными способами, в том числе на процесс, обратный поглощению света и называемый флуоресценцией. При этом часть энергии теряется в виде тепла, поэтому излучаемый свет имеет несколько большую длину волны (и меньшую энергию), чем поглощенный. Это можно увидеть, если сначала осветить раствор хлорофилла, а затем посмотреть на него в темноте.
Во время световых реакций фотосинтеза возбужденные пигменты теряют электроны, и на их месте в молекулах остаются положительные «дырки», например:
Всякий потерянный электрон будет принят другой молекулой — так называемым акцептором электрона, так что в целом это окислительно-восстановительный процесс (см. Приложение 1.2). Хлорофилл окисляется, а акцептор электрона восстанавливается. Хлорофилл служит здесь донором электрона.
Главные и вспомогательные пигменты
Фотосинтетические пигменты бывают двух типов — главные и вспомогательные. Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главными пигментами, непосредственно доставляют энергию для реакций фотосинтеза.
Существует два главных пигмента, это две формы хлорофилла а; их обозначают Р690 и Р700 (см. ниже). Сокращение Р означает «пигмент» (pigment). К вспомогательным пигментам относятся другие формы хлорофилла (в том числе все остальные формы хлорофилла а) и каротиноиды.
9.7. Поскольку энергию нельзя передавать со 100%-ной эффективностью, переход электрона от одной молекулы пигмента к другой должен сопровождаться некоторой потерей энергии в виде тепла. Хлорофилл b передает электроны на хлорофилл а. Можете ли вы сказать заранее, какой из этих хлорофиллов — а или b — обладает меньшей энергией возбуждения (т. е. энергией, необходимой для того, чтобы пигмент испустил электрон)?
Фотосинтетические единицы и реакционные центры
За последние двадцать лет мы многое узнали о расположении пигментов и связанных с ними молекул в мембранах тилакоидов. В настоящее время принято считать, что существует два типа фотосинтетических единиц, которые называют фотосистемами I и II (ФСI и ФСII). Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу главного пигмента. Последняя называется реакционным центром; в нем энергия света используется для осуществления химической реакции. Именно здесь происходит преобразование световой энергии в химическую, и именно оно является центральным событием фотосинтеза.
Судя по результатам биохимических и электронно-микроскопических исследований, каждая фотосистема содержит около 300 молекул хлорофилла. Препараты для электронной микроскопии приготовлялись методом замораживания-скалывания, который описан в Приложении 2.5; это один из хороших примеров успешного применения такого метода. Как видно на рис. 9.13, в мембранах тилакоидов имеются частицы двух типов, расположенные в определенном порядке; такие частицы называются квантосомами. Как полагают, более мелкие частицы составляют фотосистему I, а более крупные — фотосистему ΙΙ. Для каждого типа частиц характерен свой специфический набор молекул хлорофилла (рис. 9.14). Частицы фотосистемы II, по-видимому, в основном связаны с гранами. На рис. 9.14 схематически показано, как энергия (в виде возбужденных электронов) «переливается» со вспомогательных светособирающих пигментов на главный пигмент, который представлен особой формой хлорофилла а — пигментом Р690 или Р700 (в соответствии с максимумом поглощения в нанометрах). Р690 и Р700 — это энергетические ловушки. Другие специфические формы хлорофилла а, например a670 или a680, можно считать такими же вспомогательными пигментами, как и хлорофилл b. На рис. 9.14 не показаны каротиноиды, но они, по-видимому, тоже играют роль вспомогательных пигментов. Электроны, попавшие в энергетическую ловушку, используются для запуска световых реакций.
Рис. 9.13. Тилакоиды хлоропласта, выявленные методом замораживания-скалывания. Видна поверхность скола мембран самих гран и между ними. Обратите внимание на агрегаты частиц на этих мембранах
Рис. 9.14. Схематическое представление об энергетических ловушках в фотосистемах I и II. Р — пигмент, те молекула первичного пигмента хлорофилла а
Чтобы все ваши желания стали действительностью, вам необходимо вкусить блаженство с хорошими проститутками и заняться с ними любовью. Всегда индивидуалки помогут исполниться вашим самым порядочным голым фантазиям.
Источник