Гемоглобин коровы и человека
Содержание статьи
Норма гемоглобина у животных: зачем знать, какие свойства в ветеринарии, от чего повышение, как определить
Норма гемоглобина у животных зависит от вида, например, для собаки его уровень должен быть 110-170 г/л. От его содержания в крови зависит доставка кислорода к тканям. Повышение бывает при обезвоживании, сгущении крови, длительном кислородном голодании при болезнях сердца, легких, бронхов. Низкие показатели типичны для кровотечения, недостаточного и некачественного питания, хронических болезнях, нарушения пищеварения.
Для нормализации уровня гемоглобина нужно обязательно найти причину отклонений и ее устранить. При высоком хозяину важно обеспечить наличие питьевой воды, а при низком – питание с достаточным уровнем железа, витаминов. Исследование гемоглобина проводят в ходе общего анализа крови одновременно с цветовым показателем, а для обнаружения аномальных форм белка нужен спектральный тест, электрофорез на пленке.
Норма гемоглобина у животных
Норма гемоглобина у животных зависит от их видовой принадлежности, при оценке показателей ветеринарный врач ориентируется также на цветовой показатель и среднее содержание гемоглобина в эритроците (см. таблицу).
Животные | Гемоглобин, г/л | Цветовой показатель | Насыщение эритроцитов гемоглобином, пг |
Коты, кошки | 100-140 | 0,7-1,1 | 17-20 |
Собаки | 110-170 | 0,8-1,2 | 19-23 |
Кролики | 105-125 | 0,8-1 | 21-23 |
Куры | 80-120 | 2-3 | 36-40 |
Лошади | 80-140 | 0,8-1,2 | 17-20 |
Свиньи | 90-110 | 0,8-1 | 16-19 |
Коровы | 99-129 | 0,7-1,1 | 16,5-18,5 |
Эти параметры помогают отличить анемию (снижение гемоглобина и эритроцитов) по виду:
- гипохромная (при дефиците железа);
- гиперхромная (недостаток В12, фолиевой кислоты);
- нормохромоная (разрушение эритроцитов, после кровотечения).
Отличается ли от человеческих
У человека норма гемоглобина отличается, она зависит от возраста, а для взрослых и от пола, нижняя граница в г/л:
- от полугода до 5 лет – 110;
- с 5 до 11 лет – 115;
- с 11 до 14 лет – 120;
- женщины от 14 лет – 120;
- женщины при беременности – 110;
- мужчины – от 130.
Свойства в ветеринарии
У животных, как и у человека, роль гемоглобина – это перенос кислорода и углекислого газа. При вдыхании воздуха молекулы кислорода захватываются сложным белком (пигментом) и доставляются тканям, где с помощью кислородных ионов идет процесс образования энергии. Гемоглобин также забирает образованную в процессе тканевого дыхания углекислоту, и она выходит с выдыхаемым воздухом.
У млекопитающих железосодержащий кровяной пигмент находится внутри эритроцитов – красных пластинок, а у беспозвоночных он циркулирует непосредственно в плазме крови. Полностью выполнить свою функцию гемоглобин может только при нормальной структуре.
Если в крови много глюкозы, токсических соединений, или у животного есть врожденные болезни (гемоглобинопатии), то строение белка нарушается. Тогда место кислорода занимают другие соединения или снижается способность к присоединению, отдаче молекул газов. Это становится причиной кислородного голодания организма.
Гемоглобин и его повышение у животных: почему меняются показатели
Повышение гемоглобина у животных (гиперхромия, эритроцитоз) чаще всего бывает при сгущении крови из-за потери ее жидкой части. Это возникает при рвоте, поносе, обезвоживании в жаркую погоду при недостатке питьевой воды. Вторая группа болезней, протекающих с высокими показателями – это гипоксические состояния. При длительном недостатке кислорода в организме животных образуется больше эритроцитов и гемоглобина для того, чтобы компенсировать кислородное голодание.
Рост кровяных пластинок и железосодержащего пигмента типичен для сердечной, дыхательной недостаточности. Самые частые из них – это врожденные пороки сердца, эмфизема легких, пневмония. Кишечная непроходимость и тяжелые болезни печени могут также стать причиной высокого гемоглобина из-за перехода жидкости в брюшную полость (при асците). Временное повышение встречается при интенсивных физических нагрузках, стрессовом перенапряжении, переливании крови, введении стимуляторов эритропоэза (образования новых эритроцитов).
Почему бывают низкие показатели
Низкие показатели гемоглобина возможны при:
- кровопотере на фоне травмы, операции, внутреннего кровотечения;
- заболеваниях костного мозга (в нем происходит кроветворение);
- поражении почек;
- болезнях печени;
- ухудшении переваривания пищи и процесса всасывания в кишечнике;
- сахарном диабете;
- инфекции;
- хроническом воспалении (вне зависимости от локализации);
- заражении глистами, паразитами;
- неправильном питании с дефицитом белка, железа, витаминов, недоедании;
- интенсивном вливании растворов;
- злокачественных новообразованиях.
Способы стабилизации
При повышенном гемоглобине животному назначают капельницы с растворами, проводят кровопускания. Хозяину необходимо обеспечить постоянное наличие свежей питьевой воды и провести курс лечения заболеваний, которые вызывали рост показателя.
При снижении ветеринар рекомендует лечебное питание, например, собаке дают красное мясо, печень, гематоген для животных, витамины. Важно как можно больше находиться на свежем воздухе, активно двигаться, но избегать переутомления.
Для лечения железодефицитной анемии используют препараты железа. Например, комплексное средство Ферран. Он содержит декстран железа, витамин В12, В6 и никотиновую, фолиевую кислоту. Медикамент вводится внутримышечно и разрешен с первых дней жизни животного.
Как определить качество гемоглобина у животных
Чтобы определить качество гемоглобина у животных, требуется исследование крови на аномальные формы. Оно проводится методом электрофореза на пленке или спектрального анализа. Необходимость такого обследования возникает при:
- отравлении (тошнота, рвота, понос, ухудшение сознания);
- наследственных заболеваниях;
- использовании кормов с большим содержанием нитратов;
- обнаружении в анализе крови неправильных форм эритроцитов;
- применении некоторых препаратов (например, сульфаниламидов).
При них железо в составе гемоглобина меняет свою валентность, или нарушается структура белкового комплекса, что приводит к кислородному голоданию. При возникновении подозрения на врожденные болезни дополнительно назначают генетические анализы.
Симптомы, при которых нужны исследования крови животных
К симптомам, при которых ветеринар может рекомендовать анализ крови на гемоглобин и его формы, относятся:
- слабость, вялость животного;
- ухудшение аппетита;
- низкая переносимость физических нагрузок;
- одышка;
- частый пульс;
- быстрая утомляемость;
- бледность слизистых оболочек;
- белый или синеватый оттенок кожи, снижение ее температуры;
- частые инфекционные болезни.
Такая симптоматика обычно сопровождает анемию.
Заподозрить повышение показателя можно по повышенной жажде, отказе от еды, покраснении слизистых оболочек, расстройстве пищеварения. Кровь животного становится темной и густой, есть риск закупорки сосудов – тромбоз.
Анализ нужен и после перенесенной травмы, операции, кровотечения, родов. При подозрении на врожденные гемоглобинопатии врач обращает внимание на отставание роста молодого животного, деформацию костей скелета, нарушение функции нескольких систем и органов.
Гемоглобин у животных в норме, если при анализе он находится в допустимых пределах и нет аномальных форм. Анализ крови нужен при подозрении на анемию или повышение показателя при эритроцитозе.
Источник
ГЕМОГЛОБИН | Животноводство крс
Гемоглобин (Нв) – сложный белок (хромопротеид) — окрашивает эритроциты в красный цвет, состоит из белка глобина и четырех молекул гема. Гем является активной частью и содержит двухвалентное железо, одна молекула гема способна присоединять и отдавать одну молекулу кислорода. Глобин является белковым носителем гема. Гемоглобин в легких присоединяет к себе кислород, образуя непрочное, легко диссоциируемое соединение – оксигемоглобин (НвО2). Кровь, насыщенная оксигемоглобином (артериальная), поступает в ткани организма, где оксигемоглобин распадается на восстановленный гемоглобин и кислород. Восстановленный гемоглобин (дезоксигемоглобин) в тканях соединяется с углекислым газом, образуя также непрочное соединение карбгемоглобин (НвСО2). Кровь, насыщенная восстановленным гемоглобином и карбгемоглобином (венозная) поступает в малый круг кровообращения. В крови плода находится фетальный гемоглобин (НвF), который может значительно больше насыщаться кислородом, чем гемоглобин матери. Считается, что фетальный гемоглобин синтезируется в печени, а гемоглобин взрослых животных – в красном костном мозге. Гемоглобин легко вступает в соединение с угарным газом (окись углерода), образуя карбоксигемоглобин (НвСО), который утрачивает способность к переносу кислорода. Уже при содержании во вдыхаемом воздухе только 0,04% окиси углерода наступает тяжелое отравление, а при концентрации 0,1% – гибель животного. При слабом отравлении окись углерода постепенно отщепляется, и гемоглобин восстанавливает свою способность к присоединению и переносу кислорода. При действии на гемоглобин сильных окислителей (бертолетова соль, перекись водорода, анилин и др.) образуется достаточно прочное соединение гемоглобина с кислородом — метгемоглобин (МtНв), в котором двухвалентное железо переходит в трехвалентную форму. Это соединение прочно удерживает кислород и не может отщеплять его тканям. При образовании большого количества метгемоглобина наступает гибель животного от удушья. В животноводческой практике метгемоглобин образуется при скармливании животных кормов, содержащих большое количество нитратов от внесения в почву больших доз азотистых удобрений. Качественное определение гемоглобина и его производных можно провести при помощи спектрального анализа, а количественное – различными калориметрическими методами (табл. 7.).
Вид животных | Содержание Нв | Вид животных | Содержание Нв |
ЛошадиКрупный рогатый скот Свиньи Овцы | 80—13090—120 90—110 70—110 | КроликиПушные звери Птица Рыбы | 100—120120—170 80—130 60—120 |
Низкое содержание гемоглобина может наблюдаться при несбалансированном кормлении животных, нарушении синтеза гемоглобина, что приводит к значительным нарушениям многих функций организма.
Для установления насыщенности эритроцитов гемоглобином определяют цветовой показатель или индекс g.
g=
«Нв» у исследуемого животного х нормальное количество эритроцитов
«Нв» в норме х количество эритроцитов у исследуемого животного
В норме этот показатель равен 1 ± 0,15%
Миоглобин – это сложный белок, содержащийся в скелетных и сердечной мышцах. Миоглобин может связывать 14—15% общего количества кислорода. Кислород миоглобина используется мышцами при их сокращении, когда приток крови в их капиллярах уменьшается. При расслаблении мышц миоглобин снова присоединяет к себе кислород. В значительно больших количествах миоглобин содержится в мышцах морских млекопитающих, что дает им возможность длительное время находиться под водой.
При разрушении эритроцитов гемоглобин распадается на гем и глобин, часть железа гема окисляется с образованием специфического соединения—гемосидерина, используемого для синтеза нового гемоглобина. Остальная часть гема превращается в желтые пигменты – билирубин и биливердин, которые в дальнейшем в виде уробилина и урохрома выделяются с мочой или в виде стеркобилина — с каловыми массами.
Нравиться
6840
Источник
Тайна крови: эволюцию гемоглобина воссоздали в пробирке
Биологи выяснили происхождение гемоглобина и синтезировали белки, которые были его предками. Оказалось, что поразительная эффективность этого вещества, сделавшая позвоночных господами планеты, возникла благодаря всего двум ключевым мутациям.
Достижение описано в научной статье, опубликованной в журнале Nature.
Великолепная четвёрка
Все современные наземные позвоночные и почти все морские, за исключением жалкой сотни видов, относятся к группе челюстных. Но выделяются они не только челюстями, но и строением гемоглобина. Он невероятно эффективно справляется с переносом кислорода. Несомненно, это стало одним из главных эволюционных козырей челюстных, позволивших им оккупировать верхние уровни всех пищевых цепей на суше и в море.
Гемоглобин челюстных – белок с характером. Его молекула – это комплекс из четырёх субъединиц, каждая из которых, в общем-то, и сама представляет собой полноценную молекулу белка. Таким образом, наш гемоглобин – это белок, состоящий из других белков.
Таких белков два, и обозначаются они греческими буквами α и β. Каждая молекула гемоглобина в нашей крови состоит из двух молекул α-белка (α-субъединиц) и двух молекул β-белка (β-субъединиц).
При этом все четыре субъединицы связывают или высвобождают кислород одновременно. Так что молекула гемоглобина транспортирует живительный газ по принципу «четыре грузовика по цене одного». Ничего удивительного, что организмы с такой щедрой кислородной логистикой добились господствующего положения на земном шаре.
Удивительная эффективность гемоглобина позволяет нам иметь быстрый обмен веществ.
Потомки индивидуалистов
При этом и α-, и β-белок входят в обширное семейство глобинов. Удивительно, но их ближайшие известные «сородичи» по этому семейству совсем не склонны объединятся в комплексы и брать на себя скромную роль субъединиц. Они предпочитают гордое одиночество. В таком случае когда и как они обрели способность к объединению (за что им огромное спасибо от имени всех челюстных)? До сих пор ответа не было.
Между прочим, эта загадка касается не только гемоглобина. Большинство белков представляют собой комплексы из нескольких субъединиц и только благодаря этому могут выполнять свои биологические функции. И совершенно неизвестно, как и когда молекулы-субъединицы научились подобной кооперации.
И, пожалуй, именно с гемоглобина удобнее всего было начать распутывать эту головоломку.
«Структура и функция гемоглобина изучены лучше, чем, возможно, любой другой молекулы. Но ничего не было известно о том, как они возникли в ходе эволюции, – рассказывает первый автор статьи Арвид Пиллаи (Arvind Pillai) из Чикагского университета. – Это отличная модель [для изучения эволюции белков], потому что компоненты гемоглобина являются частью обширного семейства белков, и их самые близкие «родственники» не образуют комплексов, а функционируют в одиночку».
Отзвуки прошлого
Проанализировав структуру разных глобинов, исследователи восстановили их эволюционное древо. Они исходили из того, что все глобины происходят от общего белка-предка. При этом чем больше похожи друг на друга последовательности аминокислот в двух белках, тем позже разошлись их эволюционные пути. А зная, насколько часто происходят мутации, можно установить и когда произошло это ветвление.
Биологи не просто вычислили структуру белков-предков. Они синтезировали эти вещества и изучили их в эксперименте. Здесь авторам опять-таки помог тот факт, что человечество десятилетиями пристально изучало гемоглобин и накопило целый арсенал методов для этого занятия. Он подошёл и для исследования «воскрешенных» молекул.
«Есть отличные лабораторные инструменты для анализа их свойств», – отмечает Пиллаи.
Эволюционное дерево гемоглобина челюстных согласно новому исследованию.
Захватывающая история из жизни белков
У авторов получилась следующая история из жизни белков. Это быль, но, чтобы облегчить участь читателя, расскажем её в тоне сказки.
Жил-был на свете белок, последний общий предок гемоглобина и миоглобина (исследователи назвали его AncMH). И никаких комплексов ни с кем он образовывать не умел и не хотел.
Но однажды он мутировал, и получился из него белок Ancα/β – последний общий предок α- и β-белков гемоглобина. Две молекулы Ancα/β уже умели образовывать пару друг с другом.
Долго ли, коротко ли, но Ancα/β тоже мутировал. И возникло два новых белка: Ancα и Ancβ. И оказалось, что молекула Ancα так нравится молекуле Ancβ, а та настолько отвечает ей взаимностью, что две эти молекулы могут образовать пару.
До гемоглобина остался лишь один шаг. Ancα и Ancβ снова претерпели каждый свою мутацию. После чего из Ancα получился уже α-белок собственной персоной, а из Ancβ – β-белок. А пара, состоящая из одной молекулы α-белка и одной молекулы β-белка, обрела способность объединиться с другой такой же парой.
Так и получилась молекула-четвёрка, поныне снабжающая каждого из нас кислородом (в этом месте все челюстные дружно поаплодировали руками, лапами и плавниками).
Три революции в одной
Удивительно, но две мутации, научившие пары Ancα+Ancβ объединяться в четвёрки, привели к ещё одному животворному изменению.
Молекулы всех предшественников нашего современного гемоглобина, включая Ancα и Ancβ, слишком уж страстно сливались в объятиях с молекулой кислорода и неохотно расставались с ней. Поэтому они плохо выполняли свою функцию по снабжению этим веществом клеток.
Мутации, собравшие четыре белка в один, не заменили ни одной аминокислоты в участке молекулы, который соединяется с кислородом. Но когда четыре молекулы объединились, аминокислотная нить буквально натянулась как верёвка. Участок, связывающий кислород, изменил свою форму. В результате белок умерил свой пыл в отношении O2.
Более того, при этом возникла и та самая склонность всех субъединиц присоединять или отдавать кислород одновременно (очень удачно для каждого из нас).
Происходит этот процесс так. Когда одна субъединица соединяется с молекулой кислорода, натяжение аминокислотной нити ослабевает. «Кислородосвязывающий» участок соседней субъединицы возвращает себе исходную форму. Примерно ту самую, которую он имел в жадной до O2 молекуле Ancα или Ancβ. Поэтому эта субъединица тоже сразу же хватает пролетающий мимо кислород. Потом приходит черёд третьей субъединицы, а затем и четвёртой.
Когда приходит время расставаться с добычей, всё происходит в обратном порядке. Достаточно одной субъединице отдать свою молекулу газа, как аминокислотная нить снова натягивается. Форма связывающего кислород участка ближайшей субъединицы меняется, и она уже не настолько крепко держит молекулу O2. Потом та же участь постигает третью и четвёртую субъединицу.
Так и получается наш замечательный гемоглобин. Его молекула состоит из четырёх субъединиц, присоединяющих или отдающих кислород одновременно. И чувство родства с кислородом у него ровно такое, какое выгодно организму. Он охотно забирает этот газ из лёгких или жабр, но при этом послушно отдаёт его нуждающимся клеткам. И всё благодаря двум простым мутациям, научившим пары молекулы объединяться в четвёрку.
Кстати, произошли они более 400 миллионов лет назад, ещё до того, как разделились эволюционные линии человека и акулы.
Эффективный гемоглобин стал эволюционным козырем челюстных позвоночных.
Всемогущая случайность
«Мы были поражены, когда увидели, что такой простой механизм может породить такие сложные свойства, – признаётся глава исследовательской группы Джозеф Торнтон (Joseph Thornton) из Чикагского университета. – Это говорит о том, что во время эволюции скачки в сложности могут происходить внезапно и даже случайно, создавая новые молекулярные объекты, которые в конечном итоге становятся необходимыми для нашей биологии».
Традиционный взгляд на эволюцию, восходящий ещё к Дарвину, заключается в том, что новое не возникает сразу. Мутации, ведущие к кардинальным изменениям в организме, конечно, случаются, но они могут быть только вредными. Получится урод, монстр, который не сможет выжить и размножиться.
Живой организм настолько сложен, говорят сторонники этой позиции, что любое крупное изменение нарушит какой-нибудь важный процесс. Изменить живое и при этом оставить его живым можно только в мелочах. Конечно, мелкие изменения постепенно накапливаются, рано или поздно меняя организм до неузнаваемости. Но нужны целые эпохи, чтобы потомок перестал походить на предка.
Между тем восстановленная авторами история гемоглобина убедительно демонстрирует, что иногда ключевые изменения происходят скачком, за одну-две мутации. Кстати, это далеко не единственный пример того, как изменения в небольшом числе генов обеспечивают эволюционные прорывы. Так что, хотя эволюция действительно чаще всего работает через накопление небольших изменений, иногда случаются стремительные революции.
Другой урок этого исследования, пожалуй, в том, насколько нынешний облик всей биосферы определяется произошедшими когда-то случайностями.
«Представьте себе, если эти две мутации никогда не произошли <…>, – фантазирует Торнтон. – Гемоглобин в том виде, в котором мы его знаем, не эволюционировал. А вместе с ним многие последующие инновации, которые требуют эффективного транспорта кислорода, такие как быстрый обмен веществ и способность достигать гораздо больших размеров и двигаться гораздо быстрее, чем наши древние морские предки».
Впрочем, как ни удивительно, ключевые эволюционные прорывы нередко происходят независимо в разных эволюционных линиях. Например, животные и растения стали многоклеточными независимо друг от друга. Так что было бы слишком опрометчиво утверждать, что без этих двух мутаций позвоночные так и остались бы мелкими и медлительными морскими созданиями с неэффективным дыханием. Возможно, случились бы какие-то другие изменения в белках, решившие проблему доставки кислорода. Но, вероятно, жизнь в этом случае была бы совсем не похожа на ту, частью которой мы являемся.
К слову, ранее «Вести.Наука» (nauka.vesti.ru) рассказывали об эволюционной истории другого ключевого изобретения живых организмов – фотосинтеза.
Источник