Гемоглобин состоит из 2 полипептидных цепей

Гемоглобин

Гемоглобин (от др.-греч. Гемо — кровь и лат. globus — шар) — это сложная белковая молекула внутри красных клеток крови — эритроцитов (у человека и позвоночных животных). Гемоглобин составляет примерно 98% массы всех белков эритроцита.

Гемоглобин (от др.-греч. Гемо — кровь и лат. globus — шар) — это сложная белковая молекула внутри красных клеток крови — эритроцитов (у человека и позвоночных животных). Гемоглобин составляет примерно 98% массы всех белков эритроцита. За счет своей структуры гемоглобин участвует в переносе кислорода от легких к тканям, и оксида углерода обратно.

Строение гемоглобина

Гемоглобин состоит из двух цепей глобина типа альфа и двух цепей другого типа (бета, гамма или сигма), соединенными с четырьмя молекулами гемма, содержащего железо. Структура гемоглобина записывается буквами греческого алфавита: α2γ2.

Обмен гемоглобина

Гемоглобин образуется эритроцитами в красном костном мозге и циркулирует с клетками в течение всей их жизни — 120 дней. Когда селезенкой удаляются старые клетки, компоненты гемоглобина удаляются из организма или поступают обратно в кровоток, чтобы включиться в новые клетки.

Типы гемоглобина

К нормальным типам гемоглобина относится гемоглобин А или HbA (от adult — взрослый), имеющий структуру α2β2, HbA2 (минорный гемоглобин взрослого, имеющий структуру α2σ2 и фетальный гемоглобин (HbF, α2γ2. Гемоглобин F — гемоглобин плода. Замена на гемоглобин взрослого полностью происходит к 4-6 месяцам (уровень фетального гемоглобина в этом возрасте менее 1%). Эмбриональный гемоглобин образовывается через 2 недели после оплодотворения, в дальнейшем, после образования печени у плода, замещается фетальным гемоглобином.

Тип гемоглобинаПроцент содержания у взрослого человека
HbA — взрослый гемоглобин98%
HbA2 — взрослый гемоглобин минорныйОколо 2%
HbFi — фетальный гемоглобин0,5-1%
Эмбриональный гемоглобиннет
HbA1C — гликированный гемоглобин

Аномальных гемоглобинов более 300, их называют по месту открытия.

Функция гемоглобина

Основная функция гемоглобина — доставка кислорода от легких к тканям и углекислого газа обратно.

Формы гемоглобина

  • Оксигемоглобин — соединение гемоглобина с кислородом. Оксигемоглобин преобладает в артериальной крови, идущей от легких к тканям. Из-за содержания оксигемоглобина артериальная кровь имеет алый цвет.
  • Восстановленный гемоглобин или дезоксигемоглобин (HbH) — гемоглобин, отдавший кислород тканям
  • Карбоксигемоглобин — соединение гемоглобина с углекислым газом. Находится в венозной крови и придает ей темный вишневый цвет.

Как же это происходит? Почему в легких гемоглобин забирает, а в тканях отдает кислород?

Эффект Бора

Эффект был описан датским физиологом Христианом Бором https://en.wikipedia.org/wiki/Christian_Bohr (отцом знаменитого физика Нильса Бора).

Христиан Бор заявил, что при большей кислотности (более низкое значение рН, например, в тканях) гемоглобин будет меньше связываться с кислородом, что позволит его отдать.

В легких, в условиях избытка кислорода, он соединяется с гемоглобином эритроцитов. Эритроциты с током крови доставляют кислород ко всем органам и тканям. В тканях организма с участием поступающего кислорода проходят реакции окисления. В результате этих реакций образуются продукты распада, в том числе, углекислый газ. Углекислый газ из тканей переносится в эритроциты, из-за чего уменьшается сродство к кислороду, кислород выделяется в ткани.

Эффект Бора имеет громадное значение для функционирования организма. Ведь если клетки интенсивно работают, выделяют больше СО2, эритроциты могут снабдить их большим количеством кислорода, не допуская кислородного «голодания». Следовательно, эти клетки могут и дальше работать в высоком темпе.

Какой уровень гемоглобина в норме?

В каждом миллилитре крови содержится около 150 мг гемоглобина! Уровень гемоглобина меняется с возрастом и зависит от пола. Так, у новорожденных гемоглобин значительно выше, чем у взрослых, а у мужчин выше, чем у женщин.

Что еще влияет на уровень гемоглобина?

Некоторые другие состояния также влияют на уровень гемоглобина, например, пребывание на высоте, курение, беременность.

Заболевания, связанные с изменением количества или структуры гемоглобина

  • Повышение уровня гемоглобина наблюдается при эритроцитозах, обезвоживании.
  • Снижение уровня гемоглобина наблюдается при различных анемиях.
  • При отравлении угарным газом образуется карбгемоглобин (не путайте с карбоксигемоглобином!), который не может присоединять кислород.
  • Под действием некоторых веществ образуется метгемоглобин.
  • Изменение структуры гемоглобина называется гемоглобинопатией. Самые известные и частые заболевания этой группы — серповидно-клеточная анемия, бета-талассемия, персистенция фетального гемоглобина. См.гемоглобинопатии на сайте Всемирной организации здравоохранения https://www.who.int/centre/factsheets/fs308/ru/index.html

Знаете ли Вы?

  • У беспозвоночных животных гемоглобин растворен в плазме крови.
  • В сутки из легких в ткани переносится около 600 литров кислорода!
  • Красный цвет крови придает гемоглобин, входящий в состав эритроцитов. У некоторых червей вместо гемоглобина хлорокруорин и кровь зеленая. А у каракатиц, скорпионов и пауков голубая, так как вместо гемоглобина — содержащий медь гемоцианин.

Другие статьи раздела

  • Распространенный возбудитель инфекций дыхательных путей (фарингиты, синуситы, отиты, бронхиты и пневмонии). Анализы на антитела используются для диагностики инфекции Chlamydophila pneumoniae при длительных инфекциях дыхательных путей.

  • Mycoplasma pneumoniae — возбудитель пневмонии человека, острых респираторных заболеваний (ОРЗ), заболеваний верхних дыхательных путей (фарингита, бронхита), а также некоторых нереспираторных заболеваний.

  • Азооспермия (azoospermia) — отсутствие сперматозоидов в эякуляте

  • Бактерии — одноклеточные микроорганизмы, некоторые из которых могут вызывать заболевания.

  • Mycoplasma pneumoniae (микоплазма пневмонии), Chlamydohpila pneumoniae (хламидофила пневмонии, прежнее название Chlamydia pneumoniae)

  • Гипофиз — непарная железа внутренней секреции, расположенная на основании головного мозга в костном кармане — гипофизарной ямке турецкого седла. Гипофиз вырабатывает гормоны, оказывающие влияние на работу всего организма — рост и развитие, обмен веществ, половую функцию.

  • Повышенный рост волос (гирсутизм) может быть следствием не только повышенного уровня андрогенов (см. «гиперандрогения»), но и высокой активности 5-альфа-редуказы в коже (фермента волосяных фолликулов, превращающего тестостерон в гораздо более активный дигидротестостерон.

  • По данным ВОЗ (Всемирная организация здравоохранения) заболеваемость в России составляет более 50 человек на 100 000 населения. Имеет важное значение то, что у женщин значительно чаще чем у мужчин (50-90% против 10%) возможно бессимптомное течение заболевания.

  • Делеция (ген.) — вид хромосомных мутаций, при котором происходит потеря какого-либо участка хромосомы.

  • Механизм обратной связи — система, которая используется организмом для контроля некоторых функций и поддержания состояния постоянства организма. Механизм обратной связи использует один из продуктов пути обмена веществ, обычно конечный продукт, для контроля активности пути обмена веществ и регуляции количества этого продукта. Обратная связь может быть отрицательной и положительной.

Источник

Гемоглобин А

Гемоглоби́н A, или ΗbA — нормальный гемоглобин взрослого человека.

Этот белок представляет собой тетрамер, состоящий из двух пар полипептидных цепей — мономеров: двух мономеров α-цепей и двух мономеров β-цепей (так называемый гемоглобин A, или гемоглобин α2β2), или двух мономеров α и двух мономеров δ (гемоглобин Α2, или гемоглобин α2δ2).

  • Гемоглобин A — HbA (α2β2)
  • Гемоглобин A2 — HbA2 (α2δ2)

В эритроцитах здорового взрослого человека гемоглобин А (α2β2) является основным вариантом гемоглобина и составляет в норме почти 97 % общего гемоглобина эритроцитов. Оставшиеся около 3 % приходятся на гемоглобин Α2 (α2δ2). Количество этой формы гемоглобина увеличивается у больных β-талассемией.

Гемоглобин A (англ. Adult — взрослый) относится к сложным белкам — хромопротеидам. Он состоит из белковой и небелковой частей. Белковая часть представлена четырьмя полипептидными цепями, которые попарно одинаковы: 2α и 2β цепи. В связи с тем, что цепи гемоглобина A неодинаковы, он относится к гетеротетрамерным молекулам. Каждая полипептидная цепь связана с небелковой частью, которую представляет гем. Комплекс гема с α- или β-полипептидной цепью представляет субъединицу или протомер. Таким образом, вся молекула гемоглобина состоит из 4-х субъединиц или протомеров, образуя олигомер.

В структуре HbA находится 574 аминокислоты. Полипептидные цепи гемоглобина на 80 % спирализованы, обозначаются спирали буквами латинского алфавита от A до H. Неспиральные участки обозначаются двумя буквами латинского алфавита, между спиралями которых они находятся. Это необходимо для обозначения молекулярных замещений, приводящих к синтезу аномальных гемоглобинов.

Энциклопедичный YouTube

  • 1/2

    Просмотров:

    7 701

    55 455

  • Фетальный гемоглобин и гематокрит

  • Fetal hemoglobin and hematocrit | Human anatomy and physiology | Health & Medicine | Khan Academy

Это изображение матери и маленького плода, и это точка, где плод всё ещё связан с матерью пуповиной. Всё, что получает плод, он получает от матери. Она контролирует все питательные вещества и кислород, которые поступают ребёнку. Есть несколько интересных путей того, как ребёнок (в нашем случае этот маленький плод справа) может получить максимально возможное количество кислорода от матери. Мы помним, что плод старается вырасти и хочет, чтобы все растущие и развивающиеся ткани получали достаточно кислорода, что обеспечивается несколькими способами. Способ 1. Я изображу его для вас на примере пробирки с кровью. Рассмотрим одну пробирку с кровью от матери и сравним её с пробиркой с кровью ребёнка. Я нарисую пробирки одинаковой ширины и высоты. Вот эти 2 пробирки. Если бы сейчас я взял немного крови матери и центрифугировал её в этой маленькой трубочке, а затем сделал бы то же самое с кровью ребёнка, взял немного крови ребёнка и тоже центрифугировал, то такая центрифугированная кровь фактически разделилась бы на части. Мы бы получили 3 разных слоя. Первый слой под названием плазма был бы таким. Следующий слой, сразу под первым, это тонкий слой белых клеток крови и тромбоцитов. Сразу под ним идёт слой красных клеток крови. Красные клетки крови — это клетки, содержащие гемоглобин. Это единственные клетки, которые переносят кислород. У матери процент таких красных клеток крови составляет почти 35%. Это означает, что если взять всю кровь за 100%, то только 1/3, или точнее 35% занимает нижний слой красных клеток крови. Вот это слой красных клеток крови. Назовём его гематокрит. Это гематокрит матери, и это обычное значение для беременной женщины. Значение гематокрита зависит от вашего пола, а также от возраста. Но у беременной женщины он обычно составляет 35%. Перейдём к ребёнку. Давайте изобразим, на что похожа кровь ребёнка. В крови ребёнка меньшую часть занимает плазма, поэтому здесь этот слой будет меньше. И следующий слой, слой белых клеток крови, остаётся таким же маленьким и практически не меняется. Последний третий слой — слой красных клеток крови. Этот слой занимает почти 55%. Надеюсь, я не ошибся, и он составляет почти 55%. Здесь значение гематокрита намного выше. Что же это означает? Если у ребёнка гематокрит выше, почти 55%, это означает, что у него больше красных клеток в соответствующем количестве крови, и эти красные клетки могут принять больше кислорода, так как именно они как часть крови его переносят. Это и есть один из способов получения большего количества кислорода. Просто большее количество красных клеток крови в заданном количестве крови. У ребёнка увеличивается количество красных клеток крови, вот один из способов, о которых я говорю. Каков же другой способ и стратегия того, как ребёнок или плод может получить больше кислорода от матери? Если мы подумаем о количестве, мы можем также подумать о типе. Я имею в виду тип гемоглобина. Мы знаем, что взрослый гемоглобин бывает четырёх типов. Я напишу типы взрослого гемоглобина вот здесь, слева. И так, взрослый гемоглобин. «Hb» — гемоглобин, и «A» — взрослый. Я напишу здесь «взрослый», чтобы вы понимали, что к чему. Типов взрослого гемоглобина несколько, но я изображу самый важный. Есть ещё несколько типов… Этот, как я сказал, самый важный состоит из нескольких альфа-субъединиц, пептидов, которые в определённой констелляции называются альфа-субъединицами, и нескольких бета-субъединиц, которые немного отличаются от альфа-субъединиц. Соответственно мы имеем соотношение 2 на 2, так как гемоглобин состоит из четырёх субъединиц. Здесь мы видим по 2 субъединицы каждого типа. С точки зрения плода всё выглядит немного иначе, у нас есть гемоглобин, Hb, но на этот раз F — фетальный. Фетальный гемоглобин также бывает нескольких типов, самый важный из которых — HbF, который также состоит из альфа-субъединиц, которых опять две, но вместо бета-субъединиц он состоит из гамма-субъединиц. Это греческая буква гамма. Теперь кислород связывается обоими типами гемоглобина. И взрослый, и фетальный гемоглобин может связаться с 4 молекулами кислорода. Я нарисую здесь 4 молекулы кислорода, чтобы вы поняли мысль. Внутри красных кровяных клеток есть маленькая молекула, я нарисую её для вас. Она состоит из трёх углеродов, которые я пронумеровал. Два из которых связаны с кислородом, который в свою очередь связан с фосфатом. Фосфат обычно имеет 5 связей. Я просто показываю вам, как выглядит эта маленькая молекула. То же самое происходит со всеми 3 углеродами. Вот так выглядит молекула внутри красной клетки крови, у неё несколько фосфатов, которые образуют подобные связи, как показано в первом случае. Эта маленькая молекула называется (возможно, глядя на рисунок, вы уже догадались) 2 и 3 (я имею в виду эту 2 и вот эту 3) Ди (так как у неё два фосфата) Ди-фосфо-глицерат. И так, ди-фосфо и глицерат, который относится к этой части. Именно эту часть мы имеем в виду, когда говорим о глицерате, поэтому дифосфоглицерат. Сокращённое название 2,3-дифосфоглицерата — 2,3-ДФГ, так как людям не нравится произносить его полное название. Когда мы говорим «2,3-ДФГ», мы имеем в виду именно эту молекулу, которая находится внутри красных клеток крови и фактически помогает красной клетке крови избавляться от кислорода. Я нарисую, как эта маленькая молекула это делает. Теперь, когда вы знаете её состав, я просто нарисую жёлтую точку. Это та же самая молекула, поэтому я поставил между ними знак «равно». Эта маленькая молекула образует связь в середине красной клетки крови с бета-субъединицами. В реальности бета-субъединицы такой формы, что с ними очень легко образовать связь. Эта молекула находится между 4 субъединицами, бета- и альфа-, фактически они формирует конформацию, или молекулярное изменение, после которого маленькие атомы кислорода хотят выйти из её состава. Поэтому её основная функция заключается в облегчении выхода кислорода из гемоглобина. Теперь, когда молекула переходит на сторону плода и пытается образовать связь, происходит так, что эти гамма-субъединицы начинают ей говорить: «Уходи отсюда!» Они не хотят связываться с 2,3-ДФГ. Их форма не подходит для такой связи. Они просто хотят, чтобы эта молекула исчезла. Поэтому молекула не образует связи с гемоглобином F, в результате чего молекулы гемоглобина не теряют свой кислород так же легко, как гемоглобин А. Тогда зачем нам нужна здесь молекула 2,3-ДФГ? Что она делает? Интересно, что уровень 2,3-ДФГ повышается при недостатке кислорода, когда вам хронически не хватает кислорода. Хроническая нехватка кислорода возникает, в таких ситуациях, как например, когда вы на вершине Гималаев, находитесь высоко над уровнем моря, где чувствуете повышенное давление воздуха над уровнем моря, и при этом в самом воздухе мало кислорода. В такой ситуации ваши ткани испытывают хроническую нехватку кислорода. Ещё одна возможная ситуация — болезнь лёгких. Предположим, у вас проблема с лёгкими или болезнь лёгких. Хроническая болезнь лёгких, когда кислороду трудно попасть в кровь. В этой ситуации тканям также не хватает кислорода, поэтому в красных клетках крови повысится количество 2,3-ДФГ. Наконец, это может быть анемия, когда в организме мало циркулирующих красных клеток крови, поэтому при анемии ткани не получают так много кислорода, как им бы хотелось. Опять же в этой ситуации наблюдается увеличение числа 2,3-ДФГ. Поэтому основная функция 2,3-ДФГ — попытаться обеспечить выведение кислорода из гемоглобина, чтобы в случае когда тканям действительно нужен кислород, красные клетки крови могли его легко предоставить. Вернёмся к плоду. Мы видим, что гемоглобин плода отличается по своему типу от гемоглобина взрослого. Я нарисую график, и вы увидите разницу. Изображу кривую, но сначала маленький график. Эта ось парциального давления кислорода, и эта ось О2, или насыщения кислородом, показывающая, сколько пятен на гемоглобине он закрывает. Кривая будет идти вверх таким образом. Начнём с того, что гемоглобин матери или взрослый гемоглобин по причине кооперативности имеет S-образную форму. Мы говорили об этом ранее. Это будет гемоглобин взрослого, или гемоглобин типа А. Также у нас есть достаточно большое количество 2,3-ДФГ. Я изображу, как это могло бы выглядеть. Предположим, у нас вот такой, достаточно высокий уровень 2,3-ДФГ, что может быть вызвано одной из таких причин, как проживание в высокогорном районе, хроническая болезнь лёгких, постоянная анемия или любые другие ситуации. У нас высокий уровень 2,3-ДФГ, который превышает обычный. В этом случае произойдёт следующее: кривая будет выглядеть так. Кривая, показывающая связывание кислорода или насыщение кислородом, которая сдвигается вправо. Это называется сдвиг вправо, так как выглядит так, будто кривая просто подвинулась. И теперь в любой точке, я просто выберу любую точку, и ту же самую точку здесь. Это одно и то же парциальное давление кислорода, которое где-то здесь внизу. При том же самом парциальном давлении кислорода кривая направляется вниз. Это значит, что меньшее количество кислорода связано с гемоглобином в присутствии молекулы 2,3-ДФГ. И это верно, так как известно, что эта молекула помогает гемоглобину избавиться от кислорода. Что же произойдёт при противоположной ситуации, если я удлиню эту кривую? Предположим, это будет ситуация с низким уровнем 2,3-ДФГ. И это верно, так как при низком уровне 2,3-ДФГ, когда этих молекул нет, они не могут помочь кислороду отделиться, поэтому кислород остаётся с гемоглобином. И так, кислород останется с гемоглобином. При том же самом парциальном давлении кислорода большее количество гемоглобина будет связываться с кислородом. Вернёмся к фетальному гемоглобину. Мы говорили, что фетальный гемоглобин состоит из гамма-субъединиц, и гамма-субъединицы не любят молекулы 2,3-ДФГ, они с ними не связываются, а только говорят: «Уходи! Исчезни!» Учитывая, что я нарисовал эту кривую для низкого уровня 2,3-ДФГ, я мог бы просто стереть это и сказать, что это ситуация в плоде. Фетальный гемоглобин представлен этой кривой, так? Это кривая гемоглобина F. Мы видим, что кривая сдвинута влево. Основная причина этого в том, что, так как молекулы такого гемоглобина не образуют связи с 2,3-ДФГ, то эта кривая будет идти в противоположном от голубой кривой направлении. Теперь посмотрите на обе эти кривые, белую и красную. Белая кривая — кривая мамы, а красная — ребёнка. Если вы захотите найти на белой кривой точку, где почти половина молекул гемоглобина связалась с кислородом, то она может быть здесь. Это означает, что пройдено полпути, 50% всего пути. И так, 50% молекул гемоглобина связалось с кислородом при парциальном давлении кислорода, равном 27. Для плода та же самая точка 50% насыщения достигается при парциальном давлении, равном 20. Удивительно, что при более низком парциальном давлении кислорода ребёнок или плод способен выполнить ту же самую вещь, которую взрослый выполняет исключительно при большем количестве кислорода в окружающей среде или крови. Эти значения называются р50. Теперь, когда вы видите этот термин — р50, — вы понимаете что гемоглобин F р50 ниже гемоглобина А р50, так как фактически это 20 по сравнению с 27. Итак, мы узнали о двух способах: первый — количество гемоглобина или красных клеток крови у плода, второй — тип гемоглобина и то, что гемоглобин F образует более крепкую связь с кислородом при более низком давлении p50.

См. также

  • Гемоглобин E
  • Гемоглобин F

Эта страница в последний раз была отредактирована 23 июня 2020 в 10:48.

Источник

Читайте также:  От чего бывает низкий гемоглобин и какие продукты повышают