Холестерин регуляция холестерина в организме
Содержание статьи
Холестерин регуляция холестерина в организме
Обмен и биологическое значение холестерина
Переваривание и всасывание
Холестерин в организме человека бывает 2 видов: 1) холестерин, поступающий с пищей через ЖКТ и называемый экзогенный и 2) холестерин, синтезируемый из Ац – КоА — эндогенный.
С пищей ежедневно поступает
0,2 – 0,5 г, синтезируется 1 г (почти все клетки за исключением эритроцитов синтезируют холестерин, 80% холестерина синтезируется в печени.
Взаимоотношения экзо и эндогенного холестерина в определенной степени конкурентны – холестерин пищи ингибирует его синтез в печени.
Фонд холестерина, обнаруживаемого в ЖКТ состоит из 3-х частей: пищевого холестерина слизистой кишечника – может быть до 20% и холестерина желчи (холестерин желчи составляет в среднем 2,5 – 3,0г)
Всасывание холестерина происходит в основном в тощей кишке (пищевой холестерин всасывается почти полностью – если в пище его не очень много), холестерин желчи всасывается примерно на 50% — остальное экскретируется.
Всасывание холестерина осуществляется только после эмульгирования эфиров холестерина. Эмульгаторами являются желчные кислоты, моно- и диглицериды и лизолецитины. Холестериды гидролизуются холестеринэстеразой поджелудочной железы.
Пищевой и эндогенный холестерин находится в просвете кишечника в неэстерифицированной форме в составе сложных мицелл (желчные, жирные кислоты, лизолецитин), причем поступают в состав слизистой кишечника не вся мицелла целиком, а ее отдельные фракции. Сорбцил холестерина из мицелл – пассивный процесс, идущий по градиенту концентрации. Поступивший в клетки слизистой холестерин этерифицируется холестеринэстеразой или АХАТ (у человека это в основном олеиновая кислота). Из клеток слизистой кишечника холестерин поступает в лимфу в составе АОНП и ХМ, из них он переходит в ЛНП и ЛВП. В лимфе и крови 60-80% всего холестерина находится в этерифицированном виде.
Процесс всасывания холестерина из кишечника зависит от состава пищи: жиры и углеводы способствуют его всасыванию, растительные стероиды (структурные аналоги) блокируют этот процесс. Большое значение принадлежит желчным кислотам (все функции активируют – улучшают эмульгирование, всасывание). Отсюда значение лекарственных веществ, блокирующих всасывание желчных кислот.
Резкое повышение холестерина в пище ( до 1,5 г ежедневно) может сопровождаться некоторой гиперхолестеринемией у здоровых людей.
Биосинтез холестерина
Клетки печени синтезируют
80% всего холестерина, примерно 10% холестерина синтезируется в слизистой кишечника. Холестерин синтезируется не только для себя, но и на «экспорт».
Митохондрии являются держателем субстрата для синтеза холестерина. Ацетил-КоА выходит в виде цитрата и ацетоацета.
Синтез холестерина идет в цитоплазме и включает 4 стадии.
2 стадия – образование сквалена (30 атом С)
Эта стадия (как и 1) начинается в водной фазе клетки, а заканчивается в мембране эндоплазматического ретикулума образованием водо-нерастворимого сквалена.
Затрачивается 6 молей мевалоновой кислоты, 18 АТФ, НАДФ НН с образованием цепочечной структуры из 30 С – сквалена.
3 стадия – циклизация сквалена в ланостерин.
4 стадия – превращение ланостерина в холестерин.
Холестерин – циклический ненасыщенный спирт. Содержит ядро циклопентан-пергидрофенантрена.
Регуляция биосинтеза холестерина
При высоком содержании холестерина, он угнетает активность фермента
-гидрокси—метилурацил-КоА-редуктазы и синтез холестерина тормозится на стадии образования мевалоновой кислоты – это первая специфическая стадия синтеза. -гидрокси—метилурацил-КоА, не пошедший на синтез холестерина может пойти на синтез кетоновых тел. Это регуляция по типу обраьной отрицательной связи.
Транспорт холестерина
В плазме крови здоровых людей содержится 0,8 – 1,5 г/л ЛОНП, 3,2 – 4,5 г/л ЛНП и 1,3 – 4,2 г/л ЛВП.
Липидный компонент практически всех ЛП представлен наружной оболочкой, которая образована монослоем ФЛ и холестерина и внутренним гидрофобным ядром, состоящим из ТГ и холестеридов. Кроме липидов ЛП содержат белок – аполипопротеиды А, В или С. Свободный холестерин, находящийся на поверхности ЛП, легко обменивается между частицами: меченый холестерин, введенный в плазму в составе одной группы ЛП, быстро распределяется между всеми группами.
ХМ формируются в эпителиальных клетках кишечника, ЛОНП и ЛВП независимо друг от друга образуются в гепатоцитах.
ЛП обмениваются своим холестерином с мембранами клеток, особенно интенсивный обмен идет между ЛП и гепатоцитами, на поверхности которых есть рецепторы для ЛПНП. Процесс переноса холестерина в гепатоциты требует энергии.
Судьба холестерина в клетке
1. Связывание ЛНП с рецепторами фибробластов, гепатоцитов и др. клеток. На поверхности фибробласта содержится 7500 – 15000 рецепторов, чувствительных к холестерину. Рецепторы для ЛНП содержат эндотелиальные клетки, клетки надпочечников, яйцеклетки, разнообразные раковые клетки. Связывая ЛНП, клетки поддерживают определенный уровень этих ЛП в крови.
У всех обследованных здоровых людей интернализация ЛНП неизбежно сопровождается и связыванием с рецепторами клеток. Связывание и интернализация ЛНП обеспечивается одним и тем же белком, входящим в состав рецепторов ЛНП. В фибробластах больных с семейной гиперхолестеринемией, дефицитных по рецепторам ЛНП интернализация их редко угнетается.
2. ЛНП с рецептором подвергается эндоцитозу и включается в лизосомы. Там ЛНП (аполипопротеиды, холестериды) распадаются. Хлороквин – ингибитор лизосомального гидролиза подавляет эти процессы.
3. Появление в клетках свободного холестерина ингибирует ОМГ-КоА-редуктазу снижает эндогенный синтез холестерина. При концентрации ЛНП > 50 мкг/мл синтез холестерина в фибробластах подавляется полностью. Инкубация лимфоцитов 2-3 мин с сывороткой, освобожденной от ЛНП, увеличивает скорость синтеза холестерина в 5-15 раз. При добавлении ЛНП к лимфоцитам синтез холестерина замедляется. У больных с гомозиготной семейной гиперхолестеринемией снижения синтеза холестерина в клетках не происходит.
4. В клетках, способных превращать холестерин в другие стероиды ЛНП стимулирует синтез этих стероидов. Например, в клетках коры надпочечников 75% прегненалона образуется из холестерина, поступающего в составе ЛНП.
5. Свободный холестерин увеличивает активность ацетил-КоА- олестерилацилтрансферазы (АХАТ), приводя к ускоренной реэтерификации холестерина с образованием в основном олеата. Последний иногда накапливается в клетках в виде включений. Вероятно биологический смысл этого процесса заключается в борьбе с накоплением свободного холестерина.
6. Свободный холестерин снижает биосинтез рецептора ЛНП, который тормозит захват ЛНП клеткой и тем самым защищает ее от перегрузки холестерином.
7. Накопленный холестерин проникает в фосфолипидный бислой цитоплазматической мембраны. Из мембраны холестерин может перейти в ЛВП, циркулирующие с кровью.
Превращение холестерина в организме
То внимание, которое ранее уделяли метаболизму холестерина при обсуждении его роли в организме явно преувеличено. На первое место в настоящее время выдвинута структурная роль холестерина в биомембранах.
Внутриклеточно переносится в основном свободный холестерин. Эфиры холестерина внутриклеточно переносятся с очень низкой скоростью только с помощью специальных белков переносчиков или вообще не переносятся.
Эстерификация холестерина
Повышает неполярность молекулы. Этот процесс происходит как вне так и внутриклеточно, он всегда направлен на то, чтобы убрать молекулы холестерина с границы раздела липид / вода вглубь липопротеидной частицы. Таким путем происходит транспортирование или активация холестерина.
Внеклеточная эстерификация холестерина катализируется ферментом лецитинхолестеринацетилтрансферазой (ЛХАТ).
Лецитин + холестерин
лизолецин + холестерид
В основном переносится линолевая кислота. Ферментативная активность ЛХАТ связана преимущественно с ЛВП. Активатором ЛХАТ является апо-А-I. Образующийся в результате реакции эфир холестерина погружается внутрь ЛВП. При этом концентрация свободного холестерина на поверхности ЛВП снижается и таким образом поверхность подготавливается для поступления новой порции свободного холестерина, который ЛВП способен снимать с поверхности плазматической мембраны клеток в том числе и эритроцитов. Таким образом ЛВП совместно с ЛХАТ функционирует как своеобразная «ловушка» холестерина.
Из ЛВП эфиры холестерина переносятся в ЛОНП, а из последних в ЛНП. ЛНП синтезируются в печени и там же катаболизируют. ЛВП приносят холестерин в виде эфиров в печень, а из печени удаляются в виде желчных кислот. У больных с наследственным дефектом ЛХАТ в плазме много свободного холестерина. У больных с поражением печени, как правило, наблюдается низкая активность ЛХАТ и высокий уровень свободного холестерина в плазме крови.
Таким образом, ЛВП и ЛХАТ представляют собой единую систему транспорта холестерина от плазматических мембран клеток различных органов в виде его эфиров в печень.
Внутриклеточно холестерин эстерифицируется в реакции катализируемой ацил-КоА-холестеринацетилтрансферазой (АХАТ).
Ацил-КоА + холестерин
холестрид + HSKoA
Обогащение мембран холестерином активирует АХАТ.
В результате этого ускорение поступления или синтеза холестерина сопровождается ускорением его эстерификации. У человека в эстерификации холестерина чаще всего участвует линолевая кислота.
Эстерификацию холестерина в клетке следует рассматривать как реакция сопровождающуюся накоплением в ней стероида. В печени эфиры холестерина после гидролиза используются для синтеза желчных кислот, а в надпочечниках – стероидных гормонов.
Т.о. ЛХАТ разгружает от холестерина плазматические мембраны, а АХАТ – внутриклеточные. Эти ферменты не удаляют холестерин из клеток организма, а переводят его из одной формы в другую, поэтому роль ферментов эстерификации и гидролиза эфиров холестерина в развитии патологических процессов не следует преувеличивать.
Окисление холестерина.
Единственным процессом, необратимо удаляющим холестерин из мембран и ЛП является окисление. Оксигеназные системы обнаружены в гепатоцитах и клетках органов, синтезирующих стероидные гормоны (кора надпочечников, семенники, яичники, плацента).
Существуют 2 пути окислительного превращения холестерина в организме: один из них приводит к образованию желчных кислот, а другой к биосинтезу стероидных гормонов.
На образование желчных кислот расходуется 60-80% всего ежедневно образующегося холестерина, к то время как на стероидогенез – 2-4%.
Окислительное превращение холестерина в обеих реакциях протекает по многоступенчатому пути и осуществляется ферментной системой, содержащей различные изоформы цитохрома Р450. Характерной чертой окислительных превращений холестерина в организме является то, что его циклопентанпергидрофенантреновое кольцо не расщепляется и выводится из организма в неизменном виде. В противоположность этому боковая цепь легко отщепляется и метаболизирует.
Окисление холестерина в желчные кислоты служит основным путем выведения этой гидрофобной молекулы. Реакция окисления холестерина является частным случаем окисления гидрофобных соединений, т.е. процесса лежащего в основе детоксифицирующей функции печени.
Неполярная молекула в пространстве мембраны
окисление в монооксидазных системах печени и других органов
Полярная молекула в водном пространстве
клетки
Этерификация конъюгация связанные белки
Моноокисдазная система.
Содержит цитохром Р450 способный активировать молекулярный кислород (при участии НАДФН) и использует один из его атомов для окисления органических веществ, а второй для образования воды.
С27Н45ОН + НАДФН + Н + + О2
С27Н44(ОН)2 + НАДФ + Н2О
Лимитирующим является первый этап реакции (гидроксилирования в положении 7).
В печени из холестерина синтезируются первичные желчные кислоты (путь окисления холестерина). В просвете кишечника из них образуются вторичные желчные кислоты (под влиянием ферментативных систем микроорганизмов).
Первичными желчными кислотами являются холевая и дезоксихолевая. Здесь же они эстерифицируются глицином или таурином, превращаются в соответствующие соли и в таком виде секретируются в желчь.
Вторичные желчные кислоты возвращаются в печень. Этот цикл называется энтерогепатической циркуляцией желчных кислот обычно каждая молекула совершает в сутки 8-10 оборотов.
Уменьшение поступления желчных кислот в печень в результате дренирования желчного кровотока или применения ионообменных смол стимулирует биосинтез желчных кислот и 7
— гидроксилазу. Введение в диету желчных кислот, наоборот, угнетает желчегенез и ингибирует активность фермента.
Под действием холестериновой диеты желчегенез у собак увеличивается в 3 – 5 раз, у кроликов и морских свинок такого увеличения не наблюдается. У больных атеросклерозом отмечено снижение скорости окисления холестерина печени. Вероятно это снижение является патологическим звеном развития атеросклероза.
Другой путь окисления холестерина приводит к образованию стероидных гормонов несмотря на то, что в количественном отношении он составляет всего несколько процентов обменивающегося холестерина. Это очень важный путь его использования. Холестерин является основным предшественником всех стероидных гормонов в надпочечниках, яичниках, семенниках и плаценте.
Цепь биосинтеза включает множество гидроксилазных реакций, катализируемых изоформами цитохрома Р450. Скорость процесса лимитируется его первой реакцией расщепления боковой цепи. Несмотря на, небольшой количественный вклад стероидогенеза в валовое окисление холестерина угнетение этого процесса в пожилом возрасте длящемся долгие годы может постепенно приводить к накоплению холестерина в организме и развитию атеросклероза.
В коже из дегидрированного холестерина под действием УФ-лучей образуется витамин D3, затем он транспортируется в печень.
В неизменном виде холестерин секретируется желчью. В желчи его содержание доходит до 4 г/л . Холестерин желчи это 1/3 холестерина кала, 2/3 его составляет не всосавшийся холестерин пищи.
Метаболизм кетоновых тел.
Ацетил-КоА, образовавшийся при окислении жирных кислот, сгорает в цикле Кребса или используется для синтеза кетоновых тел. К кетоновым телам относятся: ацетоацетат,
-окусибутират, ацетон.
Кетоновые тела синтезируются в печени из ацетил-КоА.
Холестерин в патологии.
I. Холестериноз – изменения содержания холестерина в организме.
1. Не осложненный холестериноз – (физиологическое старение, старость, естественная смерть) проявляется накоплением холестерина в плазматических мембранах клеток в связи с уменьшением синтеза стероидных гормонов (стероидогенеза).
2. Осложненный – атеросклероз в форме ишемической болезни сердца (инфаркт миокарда), ишемия мозга (инсульт, тромбоз), ишемия конечностей, ишемии органов и тканей, связанный с уменьшением желчегенеза.
II. Изменения содержания холестерина в плазме крови.
1. Семейная гиперхолестеринэмия – обусловлена дефектом рецепторов для ЛНП. В результате холестерин не поступает в клетки и накапливается в крови. Рецепторы по химической природе являются белками. В результате развивается ранний атеросклероз.
III. Накопление холестерина в отдельных органах и тканях.
Болезнь Вольмана – первичный семейный ксантоматоз – накопление эфиров холестерина и триглицеридов во всех органах и тканях, причина дефицит лизосомальной холестеринэстеразы. Ранняя смерть.
Семейная гиперхолестенинэмия или
-липопротеинэмия. Нарушается поглощение ЛНП клетками, повышается концентрация ЛНП, а также холестерина. При -липопротеинэмии наблюдается отложение холестерина в тканях, в частности в коже (ксантомы) и в стенках артерий. Отложение холестерина в стенках артерий главное биохимическое проявление атеросклероза.
Вероятность заболевания атеросклерозом тем выше, чем больше отношение концентраций ЛНП и ЛВП в крови (ЛНП снабжает клетки холестерином, ЛВП удаляет из них избыток холестерина). Холестерин образует в стенках сосудов бляшки. Бляшки могут изъязвляться и язвы зарастают соединительной тканью (образуется рубец), в которую откладываются соли кальция. Стенки сосудов деформируются, становятся жесткими, нарушается моторика сосудов, суживается просвет вплоть до закупорки.
Гиперхолестеринемия – главная причина отложения холестерина в артериях. Но важное значение имеют также первичные повреждения стенок сосудов. Повреждения эндотелия могут возникать в следствие гипертонии, воспалительных процессов.
В области повреждения эндотелия в стенку сосудов проникают компоненты крови, в том числе липопротеиды, которые поглощаются макрофагами. Мышечные клетки сосудов начинают размножаться и тоже фагоцитировать липопротеиды. Ферменты лизосом разрушают липопротеиды, кроме холестерина. Холестерин накапливается в клетке, клетка гибнет, а холестерин оказывается в межклеточном пространстве и инкапсулируется соединительной тканью – образуется атеросклеротическая бляшка.
Между отложением холестерина в артериях и липопротеидами крови происходит обмен, но при гиперхолестеринемии преобладает поток холестерина в стенки сосудов.
Методы профилактики и лечения атеросклероза направлены на уменьшение гиперхолестеринемии. Для этого применяют малохолестериновую диету, лекарства увеличивающие эксткрецию холестерина или ингибирующие его синтез, прямое удаление холестерина из крови методом гемодиффузии.
Холестирамин связывает желчные кислоты и исключает их из кишечно-печеночного кровобращения, что приводит к усилению окисления холестерина в желчные кислоты.
Не нашли то, что искали? Воспользуйтесь поиском:
источник
Источник
Обмен холестерина в организме — биохимия и синтез
Услышав слово «холестерин» большинство людей ассоциируют его с чем-то плохим, вредным, приводящим к заболеваниям. Однако, это не совсем верно. Холестерин нужен каждому живому организму, за исключением грибов. Он принимает участие в выработке гормонов, витаминов, солей. Правильный обмен холестерина в клетках человеческого организма способен предотвратить атеросклероз, развитие сердечно-сосудистых заболеваний и даже продлить молодость.
Как выглядит?
Представляет собой твердое кристаллическое вещество белого цвета, относящееся к группе жирных спиртов. В связи с этим в большинстве стран название заменено на «холестерол». В России и ряде других стран используют «старое» название – холестерин.
Зачем нужен?
Кристаллы холестерина укрепляют мембраны всех клеток, участвующих в витаминном, энергетическом, гормональном обмене. Мембраны окружают все клетки и являются избирательным барьером, при помощи которого поддерживается определенный состав как внутри клеток, так и во внеклеточном пространстве.
Холестерол устойчив к перепадам температур и делает клеточные мембраны проницаемыми вне зависимости от климата и времени года, а также от изменений температуры тела человека. Другими словами, обмен холестерина оказывает влияние на всю биохимию организма.
Откуда берется?
Большая часть вырабатывается самим организмом. В выработке участвуют печень, почки и надпочечники, половые железы, кишечник – их работа обеспечивает организм холестерином на 80%. Остальные 20% попадают к человеку с пищей.
В синтезе участвуют почти все клетки и ткани организма. Большая часть приходится на клетки печени – гепатоциты. Около 10% всего холестерина синтезируется клетками стенок тонкого кишечника, около 5% — клетками кожи.
Другими словами, главным участником метаболизма холестерина в организме является печень. Она не только вырабатывает этот спирт гепатоцитами, но и сама крайне нуждается в холестероле для поддержания их жизнедеятельности. Для этого печень забирает липопротеиды из крови.
Сколько нужно?
В норме у каждого взрослого человека приходится около 2 грамм на каждый килограмм массы тела. То есть, при весе в 80 кг. в человеке содержится около 160 гр. холестерина.
Это количество поддерживается при помощи холестеринового обмена, благодаря которому происходит восполнение потраченного вещества. Для обеспечения жизнедеятельности тратится около 1300 мг. холестерола: часть уходит на образование гормонов, кислот, часть – выводится с калом, часть с потом, очень незначительное количество отшелушивается с поверхности кожи. Около 100 гр. организм вырабатывает сам, остальное количество поступает с пищей.
Как транспортируется?
Холестерол – это твердое вещество, не способное растворятся в воде. Поэтому в чистом виде в крови его нет. В кровь он попадает в виде растворимых соединений – липопротеидов.
Липопротеиды в свою очередь различают на:
- Высокомолекулярные соединения (липопротеиды высокой плотности);
- Низкомолекулярные (липопротеиды низкой плотности);
- Очень низкомолекулярные;
- Вырабатываемый кишечником хиломикрон.
Липопротеиды высокой плотности транспортируют холестерин к печени, откуда он затем выводится. Хиломикрон, липопротеиды низкой и очень низкой плотности отвечают за транспортировку холестерина к периферийным тканям.
Эндогенный цикл холестеринового обмена: | Экзогенный цикл обмена холестерина в организме: |
|
|
Регуляция
Синтез холестерина регулируется по принципу отрицательной обратной связи: чем больше в организм поступает экзогенного холестерола, тем меньше вырабатывается эндогенного. «Лишний» выводится из организма с калом и потом.
Общая схема обмена холестерина в организме человека
Плохой и хороший холестерин
Научно доказана зависимость между обменом холестерина в организме человека и состоянием здоровья. Так, например, низкомолекулярные ЛПНП очень плохо растворяются и могут выпадать в виде осадка на стенки сосудов, что приводит к образованию атеросклеротических бляшек. Бляшки сужают просветы сосудов, нарушают кровоснабжение органов, что, в свою очередь, может привести к развитию сердечно-сосудистых заболеваний, инфарктам, ишемическим инсультам. Поэтому такие липопротеиды называют «плохими».
Высокомолекулярные ЛПВП присутствуют в крови здорового человека в большом количестве, их называют «хорошими». Они не могут осаждаться на стенках, так как легко растворяются в крови, тем самым, в отличие от ЛПНП, защищая стенки сосудов от атеросклероза.
При повышении «плохого» холестерина применяют средства и препараты для регуляции обмена холестерина. К ним относятся: специальные диеты, употребление витаминов и микроэлементов, медикаментозных препараты.
На повышение уровня ЛПНП оказывают влияние сопутствующие заболевания, такие, как сахарный диабет, болезни печени, желчного пузыря, почек и ряд других. Поэтому при выявлении повышения «плохого» холестерина необходимо проводить полное обследование пациента, стараясь выявить все возможные заболевания, в том числе, передающиеся по наследству.
Выводы:
- Холестерин (синоним: холестерол) занимает важную роль во всех биохимических процессах организма. Он принимает участие в выработке половых гормонов, в обмене энергией и питательными веществами, в синтезе витамина D3. Будучи нерастворимым, транспортируется по всему организму, распадаясь на липопротеиды различной плотности.
- Холестерол вырабатывается организмом человека (эндогенная выработка), а также поступает из вне с едой и питьем (экзогенный путь).
- Правильный обмен холестерина способствует поддержанию работы всех клеток организма на необходимом уровне. Липопротеиды высокой плотности препятствуют образованию атеросклеротических бляшек. Низкомолекулярные липопротеиды, наоборот, увеличивают риск развития атеросклероза и инфаркта. Сам по себе холестерин не способен накапливаться; его излишки выводятся из организма.
- Для лечения нарушений синтеза холестерола и его обмена в организме, необходимо выявить все сопутствующие и наследственные заболевания, проверить работоспособность всех органов человека.
Источник