Холестерин с уксусным ангидридом
Содержание статьи
Медицинская биохимия, принципы измерительных технологий в биохимии, патохимия, диагностика, биохимия злокачественного роста. Часть 2.
Методы определения содержания холестерина сыворотки крови
фото Методы определения содержания холестерина сыворотки кровиМетоды определения общего холестерина подразделяются на:
1) колориметрические. Насчитывается около 150 колориметрических методов, основывающихся на реакциях образования цветных комплексов;
2) нефелометрические методы, основанные на сравнении степени мутности стандартного и исследуемого раствора;
3) титрометрические методы;
4) флюориметрические методы, позволяющие определять холестерин в микрообъемах сыворотки крови (например, в 0,01 мл ее);
5) газохроматографические и хроматографические методы;
6) гравиметрические методы.
Метод определения общего холестерина в сыворотке крови, основанный на реакции Либермана-Бурхарда (метод Илька)
Принцип метода
В сильнокислой безводной среде ХС взаимодействует со смесью серной, уксусной кислот и уксусного ангидрида. В ходе реакции ХС последовательно окисляется. При этом каждая стадия реакции сопровождается образованием молекулы ХС, которая имеет на одну двойную связь больше, чем соединение, из которого она образовалась.
В результате конечного окисления иона 3,5-холестодиена получается окрашенное соединение, растворенное в серной кислоте и дающее максимум абсорбции при 410 и 610 нм. Из-за неустойчивости окраски соединения время фотометрирования должно быть точно выдержано.
Реакционная смесь со стандартным раствором ХС имеет изумрудный цвет. Однако пробы сыворотки могут давать зеленый, голубой, бурый цвета. Это связано с тем, что в результате образования эндогенного тепла в реакцию вступают многие компоненты сыворотки крови. Кроме того, в реакции Либермана-Бурхарда свободный ХС и его эфиры образуют цветные комплексы с разным коэффициентом молекулярного поглощения. В случае высокого содержания эфиров ХС оптическая плотность оказывается более высокой. Поскольку на прямое определение ХС влияют многие факторы, реакцию ХС со смесью Либермана-Бурхарда нельзя считать специфичной.
Прямой метод определения ХС относительно прост в исполнении и недорог. Однако токсичность и способность вызывать коррозию системы в современных анализаторах ограничивают применение метода. В крупных лабораториях предпочтение отдают ферментативным методам определения ХС.
Референтные величины: холестерин 4,65-6,46 ммоль/л (180-250 мг/дл).
При концентрации холестерина в пробе выше 16 ммоль/л сыворотку разводят физиологическим раствором в соотношении 1 : 1 (результат).
Реакция чувствительна на изменение температуры, поэтому необходимо особенно соблюдать охлаждение реакционной смеси после добавки серной кислоты.
Билирубин в концентрации выше 50 мкмоль/л влияет на результат анализа.
Интерференцию билирубина можно исправить расчетом. Содержание 17 мкмоль/л билирубина приводит к завышению содержания холестерина в сыворотке примерно на 0,1 моль/л.
Сыворотка должна быть негемолизированной.
Необходимые реактивы
1. Ледяная уксусная кислота.
2. Концентрированная серная кислота.
3. Уксусный ангидрид.
4. Абсолютный этиловый спирт.
5. Кислотная смесь: в сухую колбу наливают 10 мл ледяной уксусной кислоты и 50 мл уксусного ангидрида, затем при постоянном перемешивании и охлаждении добавляют 10 мл концентрированной серной кислоты. Смесь должна быть бесцветной или слегка желтоватой. Хранить в холодильнике в темной склянке с притертой пробкой.
6. Калибровочный раствор: 232 мг холестерина растворяют в 2-3 мл хлороформа и доводят до объема 100 мл абсолютным этиловым спиртом. Приготовленный раствор содержит холестерин в концентрации 6 ммоль/л.
Ход определения
К 2,1 мл кислотной смеси медленно по стенке пробирки добавляют 0,1 мл плазмы или сыворотки без признаков гемолиза, перемешивают встряхиванием и ставят на 20 мин в термостат или водяную баню при температуре 37 °С, затем фотометрируют в кювете с длиной оптического пути 0,5 см против реактива при длине волны 625 нм.
Построение калибровочной кривой и расчет.
К 0,05-0,2 мл калибровочного раствора добавляют такое количество кислотной смеси, чтобы общий объем был 2,2 мл, перемешивают и выдерживают 20 мин при температуре 37 °С, так же как и опытные пробы, а затем фотометрируют. Окраска калибровочной пробы, в которую взято 0,05 мл калибровочного раствора, соответствует содержанию холестерина в плазме 3 ммоль/л, пробы, в которую взято 0,1 мл, — содержанию 6 ммоль/л и т.д.
Примечания
1. Попадание воды приводит к помутнению раствора.
2. Следы гемолиза или желтушность исследуемой плазмы или сыворотки служат причиной завышенных результатов.
3. Можно использовать для фотометрии и кюветы с длиной оптического пути 1 см, тогда количество кислотной смеси удваивают, а количество исследуемого материала остается прежним.
Метод определения содержания холестерина в сыворотке крови, основанный на холестеролоксидазной реакции
Принцип метода
Холестерин и его эфиры выделяются из липопротеинов детергентами. Холестеринэстераза гидролизует эфиры. В результате последующего ферментативного окисления холестерина холестериноксидазой образуется Н2О2.
Эфир холестерина + Н2О2 ↔ холестерин + жирные кислоты;
Холестерин + О2 ↔ холестен-3-ОН + Н2О2;
Н2О2 + n-хлорфенол + 4-аминоантипирин ↔ хинониминовый краситель + Н2О2.
Уровни нормы ХС, выявленные при обследовании «в целом здорового населения», относительно высоки. С точки зрения риска развития ишемической болезни сердца уровни ХС желательны:
1) рекомендуемый — менее 5,18 ммоль/л;
2) умеренный риск — 5,18-6,19 ммоль/л;
3) высокий риск — более 6,22 ммоль/л.
Клинико-диагностическое значение
Увеличение концентрации ХС наблюдается при полигенной гиперлипопротеидемии типа II А и II Б, III, гиперлипопротеидемии I, IV, V типов, вторичной, приобретенной гиперлипопротеидемии, отмечается также при заболеваниях печени, внутри- и внепеченочном холестазе, гломерулонефрите, нефротическом синдроме, ХПН, злокачественных опухолях поджелудочной железы, простаты, гипотиреозе, подагре, ИБС, беременности, диабете, алкоголизме, анальбуминемии, дисглобулинемии, острой перемежающейся порфирии.
Снижение концентрации холестерина обнаружено при дефиците α-липопротеида (болезнь Танжера), гипо- и а-β-липопротеидемии, некрозе печеночных клеток, злокачественных опухолях печени, гипертиреозе, нарушении всасывания, нарушении питания, мегалобластной анемии, сидеробластной анемии, талассемии, острых тяжелых заболеваниях, обширных ожогах, хронических обструктивных заболеваниях легких, умственной отсталости, ревматоидном артрите, лимфангиоэктазии кишечника.
Отмечены сезонные колебания уровня ХС, более высокие осенью и зимой, более низкие весной и летом. Повторное определение ХС после инфаркта миокарда необходимо проводить через три месяца.
Метод определения содержания липопротеинов высокой плотности в сыворотке крови
Липопротеины очень низкой плотности (ЛПОНП) и низкой плотности (ЛПНП) в противоположность липопротеинам высокой плотности (ЛПВП) образуют нерастворимые комплексы с гепарином в присутствии ионов марганца. В надосадочной жидкости, оставшейся после осаждения ЛПНП и ЛПОНП, остается α-холестерин или ЛПВП.
Нормальное содержание ХС ЛПВП в сыворотке крови составляет 0,9-1,9 ммоль/л.
Принцип метода
Хиломикроны, ЛПОНП (липопротеины очень низкой плотности) и ЛПНП (липопротеины низкой плотности) осаждаются добавлением фосфорно-вольфрамовой кислоты и хлорида магния.
После центрифугирования супернатант содержит ЛПВП (липопротеины высокой плотности) — фракцию, содержание холестерина в которой определяется ферментативно.
Полученные значения достоверны, если:
1) в пробе нет хиломикронов;
2) концентрация триацилглицеридов не превышает 400 мг/100 мл;
3) в пробах не обнаруживается следов III типа дислипопротеинемии.
При измерении на Hg 546 нм происходит завышение количества ЛПВП холестерина спектром поглощения гемоглобина, которое можно игнорировать при значениях до 200 мг Нb/100 мл.
Полученный при центрифугировании супернатант должен быть прозрачен. Если проба содержит большое количество триглицеридов (более 1000 мг/100 мл), осаждение липопротеинов может быть неполным (мутный супернатант) или часть осадка может плавать на поверхности. В этих случаях развести образец 1 : 1 0,9%-ным раствором NaCl и повторить осаждение.
Клинико-диагностическое значение ХС-ЛПВП
Эпидемиологические исследования показали обратную зависимость между уровнями ХС-ЛПВП и распространенностью ИБС. Определение ХС-ЛПВП способствует выявлению риска развития ИБС.
Повышению уровня ХС-ЛПВП способствуют такие заболевания, как первичный билиарный цирроз, хронический гепатит, алкоголизм, прочие хронические интоксикации.
Источник
Лабораторная работа №36 качественные реакции на холестерин
Холестеринотносится к стеринам, представляет собой вторичный циклический спирт. Большая часть холестерина в крови содержится в виде эфиров холестерина — холестеридов — сложных эфиров с кислотами, чаще всего с высшими жирными кислотами — пальмитиновой, стеариновой или олеиновой. Холестерин и его эфиры нерастворимы в воде, хорошо растворяются в органических растворителях: хлороформе, эфире, горячем спирте и др.
В крови холестерин образует комплексные соединения с белками. В мозге холестерин в норме содержится почти исключительно в свободном виде, а не в виде эфиров. В головном мозге происходит синтез холестерина.
Из холестерина в организме человека образуются соединения, обладающие высокой физиологической активностью: желчные кислоты и гормоны.
1. Реакция Либермана-Бурхарда.
ПРИНЦИП РАБОТЫ:
Раствор холестерина в хлороформе дает с уксусным ангидридом и концентрированной серной кислотой красное окрашивание, переходящее затем в синие и зеленые тона.
РЕАКТИВЫ и ОБОРУДОВАНИЕ:
1) холестерин, 1 % хлороформный раствор; 2) уксусный ангидрид; 3) серная кислота, концентрированная; 4) сухое часовое стекло или чашка Петри; 5) пипетки.
ХОД РАБОТЫ:
На сухое стекло наносят 1 каплю хлороформного раствора холестерина, 1 каплю уксусного ангидрида и 1 каплю концентрированной серной кислоты. Образуется красная, затем красно-фиолетовая окраска, которая со временем принимает другие оттенки — синий, зеленый.
РЕЗУЛЬТАТЫ и ВЫВОД:
2. Реакция Сальковского.
ПРИНЦИП РАБОТЫ:
Под действием концентрированной серной кислоты происходит дегидратация холестерина, конденсация образовавшихся продуктов в виде непредельных углеводородов, соединяющихся с серной кислотой с образованием окрашенных продуктов.
РЕАКТИВЫ и ОБОРУДОВАНИЕ:
1) холестерин, 1 % хлороформный раствор; 2) серная кислота концентрированная; 3) сухое часовое стекло или чашка Петри; 4) пипетки.
ХОД РАБОТЫ:
На сухое стекло наносят 1 каплю хлороформного раствора холестерина и 1 каплю серной кислоты (концентрированной). Развивается окрашивание.
РЕЗУЛЬТАТЫ и ВЫВОД:
Контрольные вопросы:
Липиды: химическая структура, физико-химические свойства, значение.
Жирные кислоты, классификация, свойства и биологическое значение.
Классификация фосфолипидов. Химическая структура. Физико-химические свойства.
Классификация гликолипидов. Химическая структура. Физико-химические свойства.
Липопротеиды. Классификация. Свойства. Значение.
Холестерин. Химическая структура, биологическое значение.
Какие вещества образуются из холестерина в организме человека?
Тема 13
ОБМЕН ЛИПИДОВ
Лабораторная работа №37
ЭМУЛЬГИРОВАНИЕ ЖИРА
Жиры, чтобы подвергнуться действию липаз, должны быть предварительно эмульгированы. Желчные кислоты — поверхностно активные вещества, являющиеся основными эмульгаторами жира в пищеварительном тракте. Желчные кислоты поступают с желчью в двеннадцатиперстную кишку, обволакивают капельки жира и препятствуют их слиянию. Желчные кислоты — холевая, дезоксихолевая, кенодезоксихолевая и литохолевая — являются производными холановой кислоты.
Белки, мыла, соли угольной кислоты, содержащиеся в некотором количестве в двеннадцатиперстной кишке, также эмульгируют жиры.
ПРИНЦИП РАБОТЫ:
Взбалтывая жир с водой, можно наблюдать образование расслаивающейся, нестойкой эмульсии. Добавляя поверхностно активные вещества, можно получить стойкую эмульсию. Эмульгаторы легко адсорбируются на поверхности раздела двух фаз, образуя тончайшую пленку, которая препятствует слиянию капелек эмульсии.
РЕАКТИВЫ и ОБОРУДОВАНИЕ:
1) растительное масло; 2) NaOH, 1 %; 3) мыло, 1 %; 4) Na2CO3, 1 %; 5) раствор яичного белка; 6) желчь; 7) пробирки.
ХОД РАБОТЫ:
В 5 пробирок наливают по 3 капли растительного масла. Добавляют в 1-ю пробирку 20 капель дистиллированной воды, во 2-ю — 20 капель желчи, в 3-ю — 20 капель 1 % раствора яичного белка, в 4-ю — 20 капель 1 % раствора мыла, в 5-ю — 20 капель 1 % раствора углекислого натрия. Все пробирки тщательно взбалтывают. Через 5 минут наблюдают сохранение эмульсии.
Результаты занести в таблицу 28, отметить сохранилась ли образовавшаяся эмульсия; если сохранилась, указать степень ее дисперсности.
Таблица 28
Мыло | Вода | Желчь | Белок | Сода |
Сохранение эмульсии Степень ее дисперсности |
ВЫВОД:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник
ХОЛЕСТЕРИН
ХОЛЕСТЕРИН (греческий chole желчь + stereos твердый; синоним холестерол) — 3-β-гидроксихолест-5-ен, C27H46O, важнейший в биологическом отношении представитель стеринов. Холестерин является источником образования в организме млекопитающих желчных кислот (см.), кортикостероидов (см.), половых гормонов (см.), витамина D3 (см. Кальциферолы.), таким образом, физиологическая функция холестерина чрезвычайно многообразна. Холестерину отводят одну из главных ролей в развитии атеросклероза (см.), в соответствии с современной точкой зрения гиперхолестеринемия (см.) относится к ведущим этиологическим факторам его развития. Однако корреляция между содержанием холестерина в крови и степенью выраженности атеросклероза у человека обнаруживается не всегда. В патологии человека устойчивую гиперхолестеринемию обычно связывают с длительным нарушением холестеринового обмена (см.), в том числе генетически обусловленным. Повышение концентрации холестерина в крови обычно наблюдают при сахарном диабете, гипотиреозе, подагре, ожирении, гипертонической болезни, при некоторых заболеваниях печени, остром нарушении мозгового кровообращения и др. Однако генез гиперхолестеринемии при всех этих патологических состояниях неодинаков. Пониженное содержание холестерина отмечают при ряде инфекционных болезней, острых и хронических заболеваниях кишечника, гипертиреозе, выраженной сердечной недостаточности с застоем крови в печени и др. (см. Гипохолестеринемия).
Холестерин был описан в 1789 году французским химиком Фуркруа (A. F. Fourcroy) как главный составной компонент желчных камней человека. В 1816 году другой французский химик Шеврель (М. E. Chevreul) впервые назвал открытое Фуркруа соединение холестерином. Строение холестерина было окончательно установлено в 30-х годов 20 века, тогда же был осуществлен и его полный химический синтез.
Молекулярный вес (масса) холестерина составляет 386,66; его молекула состоит из четырех циклов, жестко связанных между собой и образующих циклопентанпергидрофенантреновое ядро, и алифатической цени при 17-м углеродном атоме (C17), обладающей небольшой подвижностью. В положении C3 молекулы холестерина имеется гидроксильная группа, а в положении C5-C6 двойная связь. Все шестиуглеродные циклы холестерина находятся в конфигурации кресла и в транс-сочленении, между собой. Общая длина молекулы холестерина 2,2 нм, площадь поверхности около 3,8 нм2.
Из безводных растворителей холестерин кристаллизуется в виде бесцветных игл, а из водного спирта — в виде жемчужных пластинок (моногидрат холестерина);t°пл 149,5-150°, относительная плотность d418 1,052, удельное вращение [a]D -39° (в хлороформе). Холестерин нерастворим в воде (при 20° в 100 мл воды растворяется всего лишь 80-150 мкг холестерина), однако он относительно легко растворяется в ацетоне, спирте, эфире и других органических растворителях. Холестерин хорошо растворим в животных и растительных жирах (маслах), а также в смеси полярных и неполярных органических растворителей.
Из химических свойств холестерина важное биологическое значение имеет его способность образовывать сложные эфиры с кислотами. Большая часть эфиров холестерина в организме человека и других млекопитающих образована высшими жирными кислотами (см.), содержащими в своей цепи 16-20 углеродных атомов. Гидроксильная группа в молекуле холестерина может окисляться в кетогруппу, что происходит, например, при образовании стероидных гормонов (см.). Благодаря подвижности водородного атома при С7 легко образуются окисленные продукты холестерина: 7-гидрокси- и 7-кетохолестерины. Один из них 7-альфа-гидроксихолестерин является важнейшим промежуточным продуктом на пути окисления холестерина в желчные кислоты в печени.
Другим важным химическим свойством холестерина, широко используемым для его аналитического определения, является его способность образовывать интенсивно окрашенные продукты при взаимодействии с сильными кислотами (см. Кислоты и основания) в неводных растворителях: с серной кислотой в уксусном ангидриде или в смеси уксусная кислота — хлороформ (см. Либерманна — Бурхарда реакция), с серной кислотой в хлороформе (реакция Сальковского), с хлористым цинком и хлористым ацетилом в хлороформе (реакция Чучаева), с хлорным железом и серной кислотой в уксусной кислоте (реакция Липшютца). Окрашенные продукты образует как сам холестерин, так и его эфиры, а также и другие стерины, содержащие в 5 -6-м положении двойную связь. Особенностью холестерина является его способность к образованию малорастворимых комплексов с различными кислотами, например, щавелевой, трихлоруксусной, и неорганическими солями — хлористым кальцием, хлористым литием и особенно с полиеновыми антибиотиками (см.) и растительными сапонинами (см.). Комплексообразование холестерина при взаимодействии с полиеновыми антибиотиками лежит в основе действия последних на дрожжи и дрожжеподобные организмы, содержащие в своей оболочке стерины (см.). Образование комплекса с дигитонином используется для раздельного определения свободного (неэтерифицированного) и этерифицированного холестерина: этот комплекс образует только свободный холестерин.
В теле взрослого человека, по данным химического анализа, находится около 140 г холестерина (примерно 0,2% веса тела); по данным радио-изотопных исследований, содержание холестерина значительно выше (200-350 г). В отдельных органах и тканях человека содержатся следующие количества холестерина (в мг на 1 г сырой ткани): кора надпочечников — 100; мозг и нервная ткань — 20; сосудистая стенка — 5; печень, почки, селезенка, костный мозг, кожа — 3; соединительная ткань — 2; скелетная мышца — 1. Неэтерифицированный холестерин преимущественно входит в состав клеточных мембран и в миелиновые оболочки. Ткани мозга, желчь и эритроциты содержат только неэтерифицированный холестерин; в скелетных мышцах содержится 93% неэтерифицированного и 7% этерифицированного холестерина, а надпочечники, напротив, содержат 83% этерифицированного и 17% неэтерифицированного холестерина. В плазме крови человека примерно две трети холестерина этерифицировано.
Каждая клетка в организме млекопитающих содержит холестерин и нуждается в нем для поддержания формы (так называемая функция клеточного «скелета»). Входя в состав клеточных мембран, неэтерифицированный холестерин вместе с фосфолипидами (см. Фосфатиды) обеспечивает избирательную проницаемость клеточной мембраны для веществ, входящих в клетку и выходящих из нее. Вместе с фосфолипидами холестерин регулирует активность мембранно-связанных ферментов путем изменения вязкости мембраны и модификации вторичной структуры ферментов.
Холестерин образует комплексы с некоторыми белками, особенно с теми, молекулы которых содержат большое количество остатков аргинина (см.) и лизина (см.). В присутствии фосфолипидов способность холестерина образовывать комплексы с белками возрастает. С некоторыми фосфолипидами, например, с лецитином (см.), холестерин непосредственно образует комплексы, которые в водной среде дают мицеллярные растворы; при обработке таких растворов ультразвуком получаются липосомы. Характерно, что в животном организме всюду, где встречается холестерин, ему сопутствуют фосфолипиды. Эфиры холестерина находятся внутри клетки и могут рассматриваться как его запасная форма. Их гидролиз по мере надобности осуществляется при участии лизосомной холестеринэстеразы (см.).
Содержание холестерина в плазме крови человека зависит от возраста: наиболее низко оно у новорожденных (65 — 70 мг/ 100 мл), к 1 году жизни концентрация холестерина увеличивается более чем вдвое и достигает примерно 150 мг/100 мл, к 7-8 годам содержание холестерина в плазме крови возрастает всего лишь на 10-15 мг/100 мл, оставаясь постоянным до 13-14 лет, после чего несколько снижается. С 18 — 20 лет наступает постепенное, но неуклонное повышение концентрации холестерина в плазме крови до некоторой постоянной величины, продолжающееся до 50 лет у мужчин и до 60-65 лет у женщин. В высокоразвитых странах Европы и Америки, а также в Австралии средняя концентрация холестерина в плазме крови мужчин 40-60 лет составляет 205-220 мг/100 мл, а. в плазме крови женщин того же возраста 195 — 235 мг/’100 мл.
Содержание холестерина в эритроцитах составляет 120 -140 мг/100 мл и у здоровых людей не зависит от его концентрации в плазме крови.
Установлено, что в плазме крови человека и животных весь холестерин находится в составе липопротеидных комплексов (см. Липопротеиды), с помощью к-рых и осуществляется его транспорт. У взрослого человека примерно 67 — 70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9 — 10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20 — 24% — в составе липопротеидов высокой плотности (ЛПВГ1). Сходное распределение характерно и для животных , восприимчивых к развитию атеросклероза, — обезьян, свиней, кроликов, морских свинок, голубей и др. Напротив, у животных, устойчивых к развитию атеросклероза,- собак, кошек, сусликов, норок, песцов, енотов и др., большая часть холестерина плазмы крови находится в ЛПВП, обладающих антиатерогенным действием.
Другие внеклеточные жидкости содержат следующие количества холестерина (мг/100 мл): желчь — 390; плазма спермы — 80; секрет предстательной железы — 80; лимфа — 25; молоко — 20; синовиальная жидкость — 7; слюна — 5; цереброспинальная жидкость — 0,4; моча — 0,2.
Для количественного определения холестерина в плазме (сыворотке) крови используют методы, основанные на приведенных выше цветных реакциях (предложено свыше 400 вариантов таких методов). Наиболее часто используются методы, основанные на реакции Либерманна — Бурхарда и реакции Липшютца. Методы определения холестерина подразделяются на одноступенчатые — без предварительного экстрагирования холестерина из плазмы (сыворотки) крови — и многоступенчатые, включающие экстрагирование холестерина, а в ряде методов омыление (см.) эфиров холестерина, осаждение неэтерифицированного холестерина дигитонином и затем уже проведение цветной реакции. К одноступенчатым методам относится ускоренный метод Ильки (см. Ильки метод), а также метод Мирского — Товарека, основанный на образовании холестерином окрашенного продукта в растворе ледяной уксусной кислоты и уксусного ангидрида при добавлении серной и сульфосалициловой кислот. Одноступенчатые методы просты в исполнении, но дают завышенные результаты. Из многоступенчатых методов в клин, практике широко применяется метод Абелль и сотр. (см. Абелля метод), включающий предварительное экстрагирование холестерина из плазмы (сыворотки) петролейным эфиром, методы Левченко и Зигельгардта — Смирновой, при которых холестерин экстрагирует-с я хлороформом, микрометод Покровского (см. Покровского микрометоды), предусматривающий использование для экстрагирования спиртоэфирной смеси. К этой группе методов относятся также метод Раппопорта — Энгельберга и метод Григо. Одновременное определение общего и свободного холестерина проводится с помощью многоступенчатых методов с использованием дигитонина для осаждения свободного холестерина (см. Балаховского метод). Автоматические методы определения холестерина на приборах Technicon, Abbot и др. тоже основаны на образовании холестерином окрашенных продуктов.
Для определения холестерина применяют также ферментативный метод, основанный на окислении холестерина в присутствии холестериноксидазы (холестеролоксидазы; КФ 1.1.3.6) и определении количества образующейся перекиси водорода, а также газохроматографическое определение (см. Хроматография). Эффективное разделение холестерина и его эфиров достигается с помощью хроматографических методов, в частности хроматографии в тонком слое.
В целом определение холестерина различными методами дает неоднозначные результаты. Арбитражным является метод Абелль и сотр.
В клинике стало принятым рассчитывать величину отношения холестерина атерогенных липопротеидов к холестерину антиатерогенных липопротеидов. Одно из таких отношений — так называемый холестериновый коэффициент атерогенности — рассчитывается на основании определения концентраций общего холестерина и холестерина липопротеидов высокой плотности:
К = (Х — Х*ЛПВП) / Х*ЛПВП
где X — концентрация холестерина, Х*ЛПВП — концентрация холестерина липопротеидов высокой плотности. Это отношение является идеальным у новорожденных (не более 1), у лиц 20-30 лет его величина колеблется от 2 до 2,8, у лиц старше 30 лет без клинических признаков атеросклероза она находится в пределах 3-3,5, а у лиц с ишемической болезнью сердца превышает 4, достигая нередко 5-6 и выше. Этот коэффициент как показатель развития атеросклероза является более чувствительным, чем холестерин-лецитиновый показатель (отношение концентрации холестерина к концентрации лецитина в плазме крови), который одно время широко применялся в клинике.
Библиогр.: Биохимические методы исследования в клинике, под ред. А. А. Покровского, сА 18, М., 1969; Физер Л и Физер М. Стероиды, пер. с англ., М., 1964; Chevreul М. Е. Note sur le sucre de diabetes, Ann. Chim. (Paris), t. 95, p. 319, 1815; My ant N. The biology of cholesterol and steroids, L., 1981
A. H. Климов, Д. В. Иоффе.
Источник