Использование холестерина при синтезе биологически активных веществ
Холестерин, строение, биологическая роль, биосинтез и распад холестерина в организме человека
Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ? | Холестерин является одноатомным циклическим спиртом, который в тканях легко образует ХОЛЕСТЕРИДЫ. В организм человека поступает в составе пищи и синтезируется г.о. в печени, тонком отделе кишечника и коже. Биологическая роль холестерина: 1.Структурная. Свободный холестерин является, обязательным структурным компонентом мембран клеток. 2.Метаболическая. Холестерин является предшественником биологически активных веществ: витамина D3,СТЕРОИДНЫХ гормонов (АНДРОГЕНОВ, ЭСТРОГЕНОВ, КОРТИКОИДОВ) При окислении холестерина в печени при участии ЦИТОХРОМА Р-450 образуются желчные кислоты. В свободном виде холестерин транспортируется по организму с помощью транспортных ЛИПОПРОТЕИНОВ крови. Источники холестерина: 1. Пища. За сутки в организм взрослого человека поступает 0,3гр. холестерина. 2. У человека в среднем с массой 65-70кг за сутки синтезируется 3.5 -4,2гр. холестерина. Печень занимает главное место в синтезе холестерина (85%), холестерин синтезируется в кишечнике (10%) и коже (5%). Процесс биосинтеза многоступенчат: Образовавшийся в результате распада мембранных ЛИПИДОВ, а также излишки холестерина с помощью ЛПВП доставляется для окисления в печень, и в составе желчных кислот удаляется из организма с каловыми массами. При поражении печени и кишечника нарушается образование и транспорт ЛП крови. При поражении печени и желчевыводяицих путей нарушается образование и экскреция желчных кислот, участвующих в переваривании жиров пищи. В случае нарушения оттока желчи происходит насыщение её холестерином, что ведёт в этих условиях к застою и образованию холестериновых камней. Развивается ЖЕЛЧЕКАМЕННАЯ БОЛЕЗНЬ. В крови отмечается ГИПЕРХОЛЕСТЕРИНЕМИЯ. Витамины, их характеристика, отличительные признаки витаминов. Номенклатура и классификация витаминов. Роль витаминов в обмене веществ. Причины недостаточной обеспеченности организма витаминами. Понятие о гипо-, гипер- и авитаминозах. Причины гиповитаминозов. Русский врач ЛУНИН в эксперименте на животных установил, что животные, которых кормили казеином, жирами, лактозой, водой и минеральными солями болели и погибали, в отличие от животных, получавших свежее молоко. В 1911г. учёный ФУНД выделил и кристаллизовал азотсодержащее вещество, которое вылечивало экспериментальную бери-бери. Это вещество он назвал ВИТАМИНОМ (амином жизни). Витамины — это НМС различного строения, синтез которых в организме отсутствует или ограничен. Особенности витаминов: -не синтезируются в организме или синтезируются в недостаточном количестве; -не выполняют пластической функции, т.е. не являются структурным компонентом клеток; -не выполняют энергетической функции; -выполняют специфические функции, которые не могут быть восполнены другими соединениями; -при дефиците витаминов в организме развивается патологическое состояние с характерными клиническими признаками; -витамины — это метаболиты, суточная потребность в которых выражается в миллиграммах, микрограммах или ME. КЛАССИФИКАЦИЯ ВИТАМИНОВ. жирорастворимые (A, D, E, К) и водорастворимые (РР, С, В1, В2, ВЗ, В6, В10, В12, Н).. НОМЕНКЛАТУРА: Каждый витамин имеет: o буквенное название: аскорбиновая кислота — вит.С; ретинол — вит.А. o химическое название: вит.В1 -тиамин. · 3. Клиническое название, которое формируется из клинической картины патологического состояния, которое развивается при дефиците витамина в организме с приставкой «анти»: Вит.D — антирахитический; Вит.С — антискорбутный. ФУНКЦИИ ВИТАМИНОВ В ОРГАНИЗМЕ. o Выделяют группу энзимовитаминов — это предшественники коэнзимов или простетических групп ферментов: · Функциональное производное вит. РР: НАД и НАДФ. Функциональное производное вит.В2: ФМН и ФАД. o Гормоновитамины: последовательная активация вит.DЗ приводит к образованию кальцитриола. o Редоксвитамины или витамины- антиоксиданты — это вещества, которые препятствуют развитию процессов свободно-радикального окисления. Это природные оксиданты: Е, С, А. o Участвуют в синтезе медиаторов (вит.С — серотонин), стероидных гормонов. Витаминные коферменты Тиаминсодержащие (вит. B1) — тиаминмонофосфат (ТМФ), тиаминдифосфат (ТДФ) или тиаминпирофосфат (ТПФ) Флавиновые (вит В2 — рибофлавин) — флавинмононуклетид (ФМН), флавинадениндинуклеотид (ФАД) Никотинамидные (содержат вит. РР или Никотинамид) — никотинамидадениндинуклеотид (НАД), никотинамидадениндинуклеотидфосфат (НАДФ) В результате многочисленных исследований витаминной обеспеченности было установлено, что глубокий дефицит витаминов наблюдается менее чем у 20% населения, а содержание витаминов ниже нормы наблюдается у 50 — 90% населения. Содержание витаминов определяется в крови. Недостаточная витаминная обеспеченность проявляется: (1) повышенная утомляемость; (2) повышенная сонливость; (3) повышенная восприимчивость к заболеваниям; (4) повышена частота сердечно-сосудистых заболеваний; (5) повышение тяжести переноса заболеваний. При этом отсутствует специфическая клиническая симптоматика, как при гиповитаминозах. Причины недостаточной витаминной обеспеченности: 1. Снижение затрат энергии в современных условиях, следовательно, необходимость снижение потребления пищи. 2. Повышение потребления рафинированных продуктов, калорийных, но бедных витаминами. 3. Использование консервированных продуктов длительного хранения. Выход: 1. Витаминизация пищи. 2. Поливитамины с не менее 8-9 компонентами. Рацион современного человека, достаточный по калорийности, не может удовлетворить потребность организма в витаминах и микроэлементах. АВИТАМИНОЗ — это патологическое состояние, которое развивается в результате отсутствия витаминов организме, характеризуется чёткой клинической симптоматикой. ГИПЕРВИТАМИНОЗ — это состояние, связанное с избытком витамина в организме человека. Растворимые в воде витамины, не накапливаются в организме, их избыток выводится из организма с мочой. Жирорастворимые витамины депонируются ГИПОВИТАМИНОЗ — патологическое состояние, связанное с недостатком витаминов в организме. В зависимости от причины гиповитаминоз может быть: 1. Первичный (ЭКЗОГЕННЫЙ), связанный с дефицитом витаминов в употребляемой пище. 2. Вторичный, связанный с причинами эндогенного характера: -нарушение всасывания витаминов в ЖКТ; -недостаточный синтез витаминов микрофлорой кишечника (вит.В и вит.К), например, -при дисбактериозе; -поступление в пищу пищевых или лекарственных антивитаминов, которые препятствуют активации и всасыванию витаминов; — нарушение активации при усвоении витаминов в организме при патологии печени и почек; -относительная недостаточность из-за, беременности, кормлении грудью, требующие повышенного количества витаминов. |
Источник
18. Биологически активные производные холестерина.
К производным холестерина относятся стероидные гормоны и жёлчные кислоты.
Холестерин, который находится в организме человека, подвержен окислению. Так он преобразуется во всевозможные стероидные соединения. Примерно 70% имеющегося в организме свободного холестерина уходит на это процесс. Желчные кислоты синтезируются в печени, а затем хранятся и концентрируются в желчном пузыре. При необходимости они направляются в тонкий кишечник. Самой значимой в организме является холевая кислота. Еще есть дезоксихолевая, хенодезоксихолевая и литохолевая. Некоторые из них присутствуют в желчи в виде солей. Эти производные холестерина являются основными компонентами желчи. В них растворяются диетические липиды. Кроме того и сами они являются конечными продуктами распада этого вещества.
Производными холестерина являются 5 основных классов стероидных гормонов: прогестины, глюкокортикоиды, минералокортикоиды, андрогены и эстрогены. Эти гормоны являются мощными веществами, регулирующими основные функции в организме. Прогестерон и прогестаген подготавливает матку к имплантации яйцеклетки. Для нормального протекания беременности необходим прогестерон. Андрогены определяют вторичные мужские половые признаки, а эстрогены — женские. Глюкокортикоиды участвуют в образовании гликогена, подавляют воспалительные реакции. Минералокортикоиды воздействуют на почки, что приводит к увеличению потока крови и артериального давления.
Холестерин является предшественником витамина D, который играет важную роль в контроле метаболизма кальция и фосфора.
Вопрос 21 Биологическая роль вторичных мессенджеров при передаче гормонального сигнала
Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты «вторичных» мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина итреонина, а в ряде случаев — тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциациюсоставляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток.
22. Стероидные гормоны. Механизм и бла бла бла
В отличие от пептидных, стероидные гормоны легко проникают через плазматическую мембрану клеток и взаимодействуют со своими рецепторами в цитоплазме и/или ядре клетки-мишени. Некоторые рецепторы стероидных гормонов — онкопротеины (например, erbA). Все рецепторы стероидных гормонов имеют ДНК-связывающий участок. Другими словами, рецепторы стероидных гормонов — факторы транскрипции. Конечный эффект взаимодействия стероидного гормона и его рецептора состоит в изменении спектра транскрибируемых генов. Таким образом, результат действия стероидных гормонов на клетку-мишень — индукция синтеза конкретных белков, что фундаментально изменяет метаболизм как клетки-мишени, так и множества других клеток организма. Синтезируемые под влиянием стероидных гормонов белки могут и сами быть гормонами или другими важными для функционирования клетки молекулами, например ферментами. После высвобождения из эндокринной клетки стероидные гормоны попадают в кровь, где около 95% гормонов связывается со специфическими транспортными белками (транскортинами, связывающими тестостерон белками, различными альбуминами и глобулинами). Рецепторы стероидных гормонов причисляют к обширной группе ядерных рецепторов, куда также относят рецепторы ретиноидов, витамина D3, трийодтиронина. После поступления в клетки-мишени молекулы стероидного гормона могут вызвать ответ только в том случае, если в клетке есть специфические внутриклеточные рецепторы для этого гормона. Так, эстрогеновые рецепторы обнаруживают в клетках-мишенях матки, молочной железы и мозга. Клетки волосяных фолликулов кожи лица и эректильная ткань полового члена содержат андрогеновые рецепторы. Глюкокортикоидные рецепторы обнаруживают практически во всех клетках. В клетке-мишени каждый из основных классов половых стероидных гормонов (андрогены, эстрогены, прогестины) индуцирует развитие цепи событий, которая включает (I) связывание стероида с его рецептором; (И) аллостерические конформационные изменения структуры рецептора, переводящие рецептор из неактивной формы в активную; (III) связывание стероид-рецепторного комплекса с регуляторными элементами ДНК; (IV) транскрипцию и синтез новых молекул м-РНК; (V) трансляцию м-РНК и синтез новых белков. При транскрипции РНК-полимераза II присоединяется к промотору — специфическому сайту молекулы ДНК, с которого начинается синтез полимера. РНК-полимераза II раскручивает участок двойной спирали ДНК, обнажая матрицу для комплементарного спаривания оснований. Когда РНК-полимераза встречает сигнал терминации транскрипции, синтез полимера прекращается. Большинство фармакологических и физиологических знаний о механизме действия стероидных гормонов было получено на основании исследований стероидных рецепторов. Эффективность действия стероидных гормонов зависит от аффинности рецептора для гормона или его фармакологического аналога, а также от эффективности аллостерически активированного комплекса гормон-рецептор в регуляции транскрипции.
23. механизм действия белковых гормонов….
Механизмы действия пептидных, белковых гормонов и катехоламинов. Лиганд. Молекулу гормона обычно называют первичным посредником регуляторного эффекта, или лигандом. Молекулы большинства гормонов связываются со специфическими для них рецепторами плазматических мембран клеток мишеней, образуя лиганд-рецепторный комплекс. Для пептидных, белковых гормонов и катехоламинов его образование является основным начальным звеном механизма действия и приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, органоидах и ядре клетки. Среди ферментов, активируемых лиганд-рецептор-ным комплексом, описаны: аденилатциклаза, гуанилатциклаза, фосфолипа-зы С, D и А2, тирозинкиназы, фосфаттирозинфосфатазы, фосфоинозитид-3-ОН-киназа, серинтреонин-киназа, синтаза N0 и др. Вторичными посредниками, образующимися под влиянием этих мембранных ферментов, являются: 1) циклический аденозинмонофосфат (цАМФ); 2) циклический гуано зинмонофосфат (цГМФ); 3) инозитол-3-фосфат (ИФЗ); 4) диацилглицерол; 5) олиго (А) (2,5-олигоизоаденилат); 6) Са2+ {ионизированный кальций); 7) фосфатидная кислота; 8) циклическая аденозиндифосфатрибоза; 9) N0 (оксид азота). Многие гормоны, образуя лиганд-рецепторные комплексы, вызывают активацию одновременно нескольких мембранных ферментов и, соответственно, вторичных посредников. Значительная часть гормонов и биологически активных веществ взаимодействуют с семейством рецепторов, связанных с G-белками плазматической мембраны (андреналин, норадреналин, аденозин, ангиотензин, эндотелии и др.).
Вопрос №26
Биохимическая роль нуклеотидов в метаболизме
Нуклеотиды — фосфорные эфиры нуклеозидов, нуклеозидфосфаты. Свободные нуклеотиды, в частности АТФ, цАМФ, АДФ, играют важную роль в энергетических и информационных внутриклеточных процессах, а также являются составляющими частями нуклеиновых кислот и многих коферментов. Биохимическая роль нуклеотидов:
Универсальный источник энергии (АТФ и его аналоги).
Являются активаторами и переносчиками мономеров в клетке(УДФ-глюкоза)
Выступают в роли коферментов (ФАД, ФМН, НАД+, НАДФ+)
Циклические мононуклеотиды являются вторичными посредниками при действии гормонов и других сигналов(цАМФ, цГМФ).
Аллостерические регуляторы активности ферментов.
Являются мономерами в составе нуклеиновых кислот, связанные 3′-5′- фосфодиэфирными связями.
Вопрос №27
Отличия и сходства строения ДНК и РНК
Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы и фосфатной группы (фосфодиэфирные связи). В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула спирализована. В целом структура молекулы ДНК получила название «двойной спирали».
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином, гуанин — только с цитозином. Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.
Рибонуклеиновая кислота́ (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.
Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Нуклеотиды РНК состоят из сахара — рибозы, к которой в положении 1′ присоединено одно из оснований: аденин, гуанин, цитозин или урацил. Фосфатная группа соединяет рибозы в цепочку, образуя связи с 3′ атомом углерода одной рибозы и в 5′ положении другой. Фосфатные группы при физиологическом рН отрицательно заряжены, поэтому РНК — полианион. РНК транскрибируется как полимер четырёх оснований (аденина (A), гуанина (G), урацила (U) и цитозина (C), но в «зрелой» РНК есть много модифицированных оснований и сахаров). Всего в РНК насчитывается около 100 разных видов модифицированных нуклеотидов.
Азотистые основания в составе РНК могут образовывать водородные связи между цитозином и гуанином, аденином и урацилом, а также между гуанином и урацилом. Однако возможны и другие взаимодействия, например, несколько аденинов могут образовывать петлю, или петля, состоящая из четырёх нуклеотидов, в которой есть пара оснований аденин — гуанин.
Важная структурная особенность РНК, отличающая её от ДНК — наличие гидроксильной группы в 2′ положении рибозы, которая позволяет молекуле РНК существовать в А, а не В-конформации, наиболее часто наблюдаемой у ДНК. У А-формы глубокая и узкая большая бороздка и неглубокая и широкая малая бороздка. Второе последствие наличия 2′ гидроксильной группы состоит в том, что конформационно пластичные, то есть не принимающие участие в образовании двойной спирали, участки молекулы РНК могут химически атаковать другие фосфатные связи и их расщеплять.
«Рабочая» форма одноцепочечной молекулы РНК, как и у белков, часто обладает третичной структурой. Третичная структура образуется на основе элементов вторичной структуры, образуемой с помощью водородных связей внутри одной молекулы. Различают несколько типов элементов вторичной структуры — стебель-петли, петли и псевдоузлы.
Между ДНК и РНК есть три основных отличия:
ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.
ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.
Структурный анализ биологически активных молекул РНК, включая тРНК, рРНК, мяРНК и другие молекулы, которые не кодируют белков, показал, что они состоят не из одной длинной спирали, а из многочисленных коротких спиралей, расположенных близко друг к другу и образующих нечто, похожее на третичную структуру белка. В результате этого РНК может катализировать химические реакции, например, пептидил-трансферазный центр рибосомы, участвующий в образовании пептидной связи белков, полностью состоит из РНК.
Соседние файлы в предмете Биохимия
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Источник