Клетки крови содержащие гемоглобин называются

Содержание статьи

Гемоглобин

Молекула гемоглобина: 4 субъединицы окрашены в разные цвета

Структура гемоглобина человека. Железосодержащие гем-группы показаны зелёным. Красным и синим показаны альфа- и бета- субъединицы.

Гемоглоби́н (от др.-греч. αἷμα «кровь» + лат. globus «шар») (Hb или Hgb) — сложный железосодержащий белок животных, обладающих кровообращением, способный обратимо связываться с кислородом, обеспечивая его перенос в ткани. У позвоночных животных содержится в эритроцитах, у большинства беспозвоночных растворён в плазме крови (эритрокруорин) и может присутствовать в других тканях[1]. Молекулярная масса гемоглобина человека — около 66,8 кДа. Молекула гемоглобина может нести до четырёх молекул кислорода. Один грамм гемоглобина может переносить до 1,34 мл кислорода.

Гемоглобин появился более чем 400 миллионов лет назад у последнего общего предка человека и акул в результате 2 мутаций, приведших к формированию четырёхкомпонентного комплекса гемоглобина, сродство которого к кислороду достаточно для связывания кислорода в насыщенной им среде, но недостаточно, чтобы удерживать его в других тканях организма.[2][3]

Большой вклад в исследование структуры и функционирования гемоглобина внёс Макс Фердинанд Перуц, получивший за это в 1962 году Нобелевскую премию[4].

Нормальным содержанием гемоглобина в крови человека считается: у мужчин — 130-160 г/л (нижний предел — 120, верхний предел — 180 г/л), у женщин — 120-160 г/л; у детей нормальный уровень гемоглобина зависит от возраста и подвержен значительным колебаниям. Так, у детей через 1-3 дня после рождения нормальный уровень гемоглобина максимален и составляет 145-225 г/л, а к 3-6 месяцам снижается до минимального уровня — 95-135 г/л, затем с 1 года до 18 лет отмечается постепенное увеличение нормального уровня гемоглобина в крови[5].

Во время беременности в организме женщины происходит задержка и накопление жидкости, что является причиной гемодилюции — физиологического разведения крови. В результате наблюдается относительное снижение концентрации гемоглобина (при беременности уровень гемоглобина в норме составляет 110-155 г/л). Кроме этого, в связи с внутриутробным ростом ребёнка происходит быстрое расходование запасов железа и фолиевой кислоты. Если до беременности у женщины был дефицит этих веществ, проблемы, связанные со снижением гемоглобина, могут возникнуть уже на ранних сроках беременности[6].

Главные функции гемоглобина: перенос кислорода и буферная функция. У человека в капиллярах лёгких в условиях избытка кислорода последний соединяется с гемоглобином. Потоком крови эритроциты, содержащие молекулы гемоглобина со связанным кислородом, доставляются к органам и тканям, где кислорода мало; здесь необходимый для протекания окислительных процессов кислород освобождается от связи с гемоглобином. Кроме того, гемоглобин способен связывать в тканях небольшое количество диоксида углерода (CO2) и освобождать его в лёгких.

Монооксид углерода (CO) связывается с гемоглобином крови намного сильнее (в 250 раз[7]), чем кислород, образуя карбоксигемоглобин (HbCO). Впрочем, монооксид углерода может быть частично вытеснен из гема при повышении парциального давления кислорода в лёгких. Некоторые процессы приводят к окислению иона железа в гемоглобине до степени окисления +3. В результате образуется форма гемоглобина, известная как метгемоглобин (HbOH) (metHb, от «мета-» и «гемоглобин», иначе гемиглобин или ферригемоглобин, см. Метгемоглобинемия). В обоих случаях блокируются процессы транспортировки кислорода.

Строение[править | править код]

Гемоглобин является сложным белком класса гемопротеинов, то есть в качестве простетической группы здесь выступает гем — порфириновое ядро, содержащее железо. Гемоглобин человека является тетрамером, то есть состоит из 4 протомеров. У взрослого человека они представлены полипептидными цепями α1, α2, β1 и β2. Субъединицы соединены друг с другом по принципу изологического тетраэдра. Основной вклад во взаимодействие субъединиц вносят гидрофобные взаимодействия. И α-, и β-цепи относятся к α-спиральному структурному классу, так как содержат исключительно α-спирали. Каждая цепь содержит восемь спиральных участков, обозначаемых буквами от A до H (от N-конца к C-концу).

Гем представляет собой комплекс протопорфирина IX, относящегося к классу порфириновых соединений, с атомом железа(II). Этот кофактор нековалентно связан с гидрофобной впадиной молекул гемоглобина и миоглобина.

Железо(II) характеризуется октаэдрической координацией, то есть связывается с шестью лигандами. Четыре из них представлены атомами азота порфиринового кольца, лежащими в одной плоскости. Две другие координационные позиции лежат на оси, перпендикулярной плоскости порфирина. Одна из них занята азотом остатка гистидина в 93-м положении полипептидной цепи (участок F). Связываемая гемоглобином молекула кислорода координируется к железу с обратной стороны и оказывается заключённой между атомом железа и азотом ещё одного остатка гистидина, располагающегося в 64-м положении цепи (участок E).

Всего в гемоглобине человека четыре участка связывания кислорода (по одному гему на каждую субъединицу), то есть одновременно может связываться четыре молекулы. Гемоглобин в лёгких при высоком парциальном давлении кислорода соединяется с ним, образуя оксигемоглобин. При этом кислород соединяется с гемом, присоединяясь к железу гема на 6-ю координационную связь. На эту же связь присоединяется и монооксид углерода, вступая с кислородом в «конкурентную борьбу» за связь с гемоглобином, образуя карбоксигемоглобин.

Связь гемоглобина с монооксидом углерода более прочная, чем с кислородом. Поэтому часть гемоглобина, образующая комплекс с монооксидом углерода, не участвует в транспорте кислорода. В норме у человека образуется 1,2 % карбоксигемоглобина. Повышение его уровня характерно для гемолитических процессов, в связи с этим уровень карбоксигемоглобина является показателем гемолиза.

Физиология[править | править код]

Изменение состояний окси- и дезоксигемоглобина

В отличие от миоглобина гемоглобин имеет четвертичную структуру, которая придаёт ему способность регулировать присоединение и отщепление кислорода и характерную кооперативность: после присоединения первой молекулы кислорода связывание последующих облегчается. Структура может находиться в двух устойчивых состояниях (конформациях): оксигемоглобин (содержит 4 молекулы кислорода; напряжённая конформация) и дезоксигемоглобин (кислорода не содержит; расслабленная конформация).

Устойчивое состояние структуры дезоксигемоглобина усложняет присоединение к нему кислорода. Поэтому для начала реакции необходимо достаточное парциальное давление кислорода, что возможно в альвеолах лёгких. Изменения в одной из 4 субъединиц влияют на оставшиеся, и после присоединения первой молекулы кислорода связывание последующих облегчается.

Отдав кислород тканям, гемоглобин присоединяет к себе ионы водорода и углекислый газ, перенося их в лёгкие[8].

Гемоглобин является одним из основных белков, которыми питаются малярийные плазмодии — возбудители малярии, и в эндемичных по малярии районах земного шара весьма распространены наследственные аномалии строения гемоглобина, затрудняющие малярийным плазмодиям питание этим белком и проникновение в эритроцит. В частности, к таким имеющим эволюционно-приспособительное значение мутациям относится аномалия гемоглобина, приводящая к серповидноклеточной анемии. Однако, к несчастью, эти аномалии (как и аномалии строения гемоглобина, не имеющие явно приспособительного значения) сопровождаются нарушением кислород-транспортирующей функции гемоглобина, снижением устойчивости эритроцитов к разрушению, анемией и другими негативными последствиями. Аномалии строения гемоглобина называются гемоглобинопатиями.

Читайте также:  Какая норма гемоглобина в крови у женщин после 40 лет таблица

Гемоглобин высокотоксичен при попадании значительного его количества из эритроцитов в плазму крови (что происходит при массивном внутрисосудистом гемолизе, геморрагическом шоке, гемолитических анемиях, переливании несовместимой крови и других патологических состояниях). Токсичность гемоглобина, находящегося вне эритроцитов, в свободном состоянии в плазме крови, проявляется тканевой гипоксией — ухудшением кислородного снабжения тканей, перегрузкой организма продуктами разрушения гемоглобина — железом, билирубином, порфиринами с развитием желтухи или острой порфирии, закупоркой почечных канальцев крупными молекулами гемоглобина с развитием некроза почечных канальцев и острой почечной недостаточности.

Ввиду высокой токсичности свободного гемоглобина в организме существуют специальные системы для его связывания и обезвреживания. В частности, одним из компонентов системы обезвреживания гемоглобина является особый плазменный белок гаптоглобин, специфически связывающий свободный глобин и глобин в составе гемоглобина. Комплекс гаптоглобина и глобина (или гемоглобина) затем захватывается селезёнкой и макрофагами тканевой ретикуло-эндотелиальной системы и обезвреживается.

Другой частью гемоглобинообезвреживающей системы является белок гемопексин[en], специфически связывающий свободный гем и гем в составе гемоглобина. Комплекс гема (или гемоглобина) и гемопексина затем захватывается печенью, гем отщепляется и используется для синтеза билирубина и других жёлчных пигментов или выпускается в рециркуляцию в комплексе с трансферринами для повторного использования костным мозгом в процессе эритропоэза.

Экспрессия генов гемоглобина до и после рождения.

Также указаны типы клеток и органы, в которых происходит экспрессия гена (данные по Wood W. G., (1976). Br. Med. Bull. 32, 282.).[9]

Гемоглобин при заболеваниях крови[править | править код]

Дефицит гемоглобина может быть вызван, во-первых, уменьшением количества молекул самого гемоглобина (см. анемия), во-вторых, из-за уменьшенной способности каждой молекулы связать кислород при том же самом парциальном давлении кислорода.

Гипоксемия — это уменьшение парциального давления кислорода в крови, её следует отличать от дефицита гемоглобина. Хотя и гипоксемия, и дефицит гемоглобина являются причинами гипоксии. Если дефицит кислорода в организме в общем называют гипоксией, то местные нарушения кислородоснабжения называют ишемией.

Прочие причины низкого гемоглобина разнообразны: кровопотеря, пищевой дефицит, болезни костного мозга, химиотерапия, отказ почек, атипичный гемоглобин.

Повышенное содержание гемоглобина в крови связано с увеличением количества или размеров эритроцитов, что наблюдается также при истинной полицитемии. Это повышение может быть вызвано: врождённой болезнью сердца, лёгочным фиброзом, слишком большим количеством эритропоэтина.

См. также[править | править код]

  • Гемоглобин А
  • Гемоглобин С (мутантная форма)
  • Эмбриональный гемоглобин
  • Гемоглобин S (мутантная форма)
  • Гемоглобин F (фетальный)
  • Кобоглобин
  • Нейроглобин
  • Анемия
  • Порфирия
  • Талассемия
  • Эффект Вериго — Бора

Примечания[править | править код]

  1. ↑ Haemoglobins of invertebrate tissues. Nerve haemoglobins of Aphrodite, Aplysia and Halosydna
  2. ↑ Ученые выяснили происхождение гемоглобина. РИА Новостей, 20.05.2020, 18:59
  3. ↑ Michael Berenbrink. Evolution of a molecular machine/Nature, NEWS AND VIEWS, 20 MAY 2020
  4. ↑ Лауреаты нобелевской премии. Макс Перуц.
  5. ↑ Назаренко Г. И., Кишкун А. А. Клиническая оценка результатов лабораторных исследований. — 2005.
  6. ↑ Общий анализ крови и беременность Архивная копия от 10 марта 2014 на Wayback Machine
  7. ↑ Hall, John E. Guyton and Hall textbook of medical physiology (англ.). — 12th ed.. — Philadelphia, Pa.: Saunders/Elsevier, 2010. — P. 1120. — ISBN 978-1416045748.
  8. ↑ Степанов В. М. Структура и функции белков : Учебник. — М. : Высшая школа, 1996. — С. 167-175. — 335 с. — 5000 экз. — ISBN 5-06-002573-X.
  9. ↑ Айала Ф., . Современная генетика: В 3-х т = Modern Genetics / Пер. А. Г. Имашевой, А. Л. Остермана, . Под ред. Е. В. Ананьева. — М.: Мир, 1987. — Т. 2. — 368 с. — 15 000 экз. — ISBN 5-03-000495-5.

Литература[править | править код]

  • Mathews, CK; van Holde, KE & Ahern, KG (2000), Biochemistry (3rd ed.), Addison Wesley Longman, ISBN 0-8053-3066-6
  • Levitt, M & Chothia, C (1976), Structural patterns in globular proteins, Nature

Ссылки[править | править код]

  • Eshaghian, S; Horwich, TB; Fonarow, GC (2006). «An unexpected inverse relationship between HbA1c levels and mortality in patients with diabetes and advanced systolic heart failure». Am Heart J. 151 (1): 91.e1-91.e6. DOI:10.1016/j.ahj.2005.10.008. PMID 16368297.
  • Kneipp J, Balakrishnan G, Chen R, Shen TJ, Sahu SC, Ho NT, Giovannelli JL, Simplaceanu V, Ho C, Spiro T (2005). «Dynamics of allostery in hemoglobin: roles of the penultimate tyrosine H bonds». J Mol Biol. 356 (2): 335-53. DOI:10.1016/j.jmb.2005.11.006. PMID 16368110.
  • Hardison, Ross C. (2012). «Evolution of Hemoglobin and Its Genes». Cold Spring Harbor Perspectives in Medicine. 2 (12): a011627. DOI:10.1101/cshperspect.a011627. ISSN 2157-1422. PMC 3543078. PMID 23209182.

Источник

Клетки крови — строение клеток крови, эритроциты, лейкоциты, тромбоциты, резус фактор – что это?

Сайт предоставляет справочную информацию. Адекватная диагностика и лечение болезни возможны под наблюдением добросовестного врача. У любых препаратов есть противопоказания. Необходима консультация специалиста, а также подробное изучение инструкции!

Кровь человека является важнейшей системой в организме, которая выполняет очень много функций. Кровь — это и транспортная система, по которой переносятся необходимые вещества к клеткам различных органов, а из клеток удаляются продукты распада и прочие отработанные вещества, подлежащие выведению из организма. В крови же циркулируют клетки и вещества, обеспечивающие защитную функцию всего организма.

Рассмотрим подробнее, что же представляет собой система крови, из чего состоит и какие функции выполняет. Итак, кровь состоит из жидкой части и клеток. Жидкая часть представляет собой особый раствор белков, сахаров, жиров, микроэлементов и называется сывороткой крови. Оставшаяся часть крови представлена различными клетками.

В составе крови различают три основных видов клеток: эритроциты, лейкоциты и тромбоциты.

Эритроцит, резус фактор, гемоглобин, строение эритроцита

Начнем с клеток, которых больше всего находится в крови — эритроцитов. Многие из нас знают, что эритроциты переносят кислород к клеткам органов и тканей, тем самым обеспечивая дыхание каждой мельчайшей клетки. За счет чего они способны это делать?

Эритроцит, — какой он? Каково его строение? Что такое гемоглобин?

Итак, эритроцит — это клетка, имеющая особую форму двояковогнутого диска. В клетке нет ядра, а большую часть цитоплазмы эритроцита занимает специальный белок — гемоглобин. Гемоглобин имеет очень сложную структуру, состоит из белковой части и атома железа (Fe). Именно гемоглобин и является переносчиком кислорода.

Клетки крови содержащие гемоглобин называютсяПроисходит данный процесс следующим образом: имеющийся атом железа присоединяет молекулу кислорода, когда кровь находится в легких человека во время вдоха, затем кровь по сосудам проходит через все органы и ткани, где кислород открепляется от гемоглобина и остается в клетках. В свою очередь, из клеток выделяется углекислый газ, который присоединяется к атому железа гемоглобина, кровь вновь возвращается в легкие, где происходит газообмен — углекислый газ вместе с выдохом удаляется, вместо него присоединяется кислород и весь круг повторяется вновь. Таким образом, гемоглобин переносит к клеткам кислород, а из клеток забирает углекислый газ. Именно поэтому человек вдыхает кислород, а выдыхает углекислый газ. Кровь, в которой эритроциты насыщены кислородом, имеет ярко алую окраску и называется артериальной, а кровь, с эритроцитами, насыщенными углекислым газом, имеет темно — красный цвет и называется венозной.

В крови человека эритроцит живет 90 — 120 дней, после чего разрушается. Явление разрушения эритроцитов называется гемолиз. Гемолиз происходит в основном в селезенке. Часть эритроцитов подвергается разрушению в печени или непосредственно в сосудах.

Подробную информацию о расшифровке общего анализа крови читайте в статье: Общий анализ крови

Читайте также:  Снижает ли в12 гемоглобин

Антигены группы крови и резус — фактора

Клетки крови содержащие гемоглобин называются

На поверхности эритроцитов имеются специальные молекулы — антигены. Антигенов существует несколько разновидностей, поэтому кровь разных людей отличается друг от друга. Именно антигены формируют группу крови и резус — фактор. Например, наличие антигенов 00 — формирует первую группу крови, антигены 0А — вторую, 0В — третью и антигены АВ — четвёртую. Резус — фактор определяется наличием или отсутствием антигена Rh на поверхности эритроцита. Если антиген Rh имеется на эритроците, то кровь положительного резус — фактора, если же отсутствует, то кровь, соответственно,с отрицательным резус — фактором. Определение группы крови и резус — фактора имеет огромное значение при переливании крови. Разные антигены «враждуют» друг с другом, что вызывает разрушение эритроцитов и человек может погибнуть. Поэтому переливать можно только кровь одинаковой группы и одного резус — фактора.

Откуда же появляется эритроцит в крови?

Эритроцит развивается из особой клетки — предшественницы. Данная клетка — предшественница располагается в костном мозгу и называется эритробласт. Эритробласт в костном мозгу проходит несколько стадий развития, чтобы превратиться в эритроцит и за это время несколько раз делится. Таким образом, из одного эритробласта получается 32 — 64 эритроцита. Весь процесс созревания эритроцитов из эритробласта проходит в костном мозгу, а готовые эритроциты поступают в кровяное русло взамен «старых», подлежащих разрушению.

Ретикулоцит, предшественник эритроцита

Помимо эритроцитов в крови имеются ретикулоциты. Ретикулоцит — это немного «недозрелый» эритроцит. В норме у здорового человека их количество не превышает 5 — 6 штук на 1000 эритроцитов. Однако в случае острой и большой кровопотери, из костного мозга выходят и эритроциты, и ретикулоциты. Это происходит, потому что резерв готовых эритроцитов недостаточен для восполнения кровопотери, а для созревания новых требуется время. В силу данного обстоятельства костный мозг «выпускает» немного «незрелые» ретикулоциты, которые, однако, уже могут выполнять основную функцию — переносить кислород и углекислый газ.

Какой формы бывают эритроциты?

В норме 70-80% эритроцитов имеют сферическую двояковогнутую форму, а остальные 20-30% могут быть различной формы. Например, простая сферическая, овальная, надкусанная, чашеобразная и т.д. Форма эритроцитов может нарушаться при различных заболеваниях, например эритроциты в форме серпа характерны для серповидно — клеточной анемии, овальной формы бывают при недостатке железа, витаминов В12, фолиевой кислоты.

Подробную информацию о причинах сниженного гемоглобина (аненмии) читайте в статье: Анемия

Лейкоциты, виды лейкоцитов — лимфоциты, нейтрофилы, эозинофилы, базофилы, моноцит. Строение и функции различных видов лейкоцитов

Лейкоциты — большой класс клеток крови, который включает в себя несколько разновидностей. Рассмотрим разновидности лейкоцитов подробно.

Итак, прежде всего, лейкоциты делятся на гранулоциты (имеют зернистость, гранулы) и агранулоциты (не имеют гранул).

К гранулоцитам относятся:

  1. нейтрофилы
  2. эозинофилы
  3. базофилы

Агранулоциты включают следующие виды клеток:

  1. моноциты
  2. лимфоциты

Нейтрофил, внешний вид, строение и функции

Нейтрофилы — самая многочисленная разновидность лейкоцитов, в норме в крови их содержится до 70% от общего количества лейкоцитов. Именно поэтому подробное рассмотрение видов лейкоцитов начнем именно с них.

Откуда такое название — нейтрофил?

В первую очередь узнаем, почему нейтрофил так называется. В цитоплазме этой клетки имеются гранулы, которые окрашиваются красителями, имеющими нейтральную реакцию (рН = 7,0). Именно поэтому данную клетку так и назвали: нейтрофил — имеет сродство к нейтральным красителям. Данные нейтрофильные гранулы имеют вид мелкой зернистости фиолетово — коричневого цвета.

Как выглядит нейтрофил? Как он появляется в крови?

Нейтрофил имеет округлую форму и необычную форму ядра. Ядро его представляет собой палочку или же 3 — 5 сегментов, соединенных между собой тонкими тяжами. Нейтрофил с ядром в форме палочки (палочкоядерный) — это «молодая» клетка, а с сегментарным ядром (сегментоядерный) — «зрелая» клетка. В крови большинство нейтрофилов сегментоядерные (до 65%), палочкоядерные в норме составляют лишь до 5%.

Откуда же нейтрофилы приходят в кровь? Нейтрофил образуется в костном мозгу из своей клетки — предшественницы — миелобласта нейтрофильного. Как и в ситуации с эритроцитом, клетка — предшественница (миелобласт) проходит несколько стадий созревания, в течение которых также делится. В итоге из одного миелобласта созревает 16-32 нейтрофила.

Где и сколько живет нейтрофил?

Что же происходит с нейтрофилом дальше после его созревания в костном мозгу? Зрелый нейтрофил проживает в костном мозгу 5 дней, после чего выходит в кровь, где живет в сосудах 8 — 10 часов. Причем костномозговой пул зрелых нейтрофилов в 10 — 20 раз больше, чем сосудистый пул. Из сосудов они уходят в ткани, из которых уже не возвращаются в кровь. В тканях нейтрофилы живут 2 — 3 дня, после чего подвергаются разрушению в печени и селезенке. Итак, зрелый нейтрофил живет только 14 суток.

Гранулы нейтрофила — что это?

В цитоплазме нейтрофила имеется около 250 видов гранул. Эти гранулы содержат специальные вещества, которые помогают выполнять нейтрофилу его функции. Что же содержится в гранулах? В первую очередь, это ферменты, бактерицидные вещества (уничтожающие бактерии и прочие болезнетворные агенты), а также регуляторные молекулы, которые контролируют деятельность самих нейтрофилов и других клеток.

Какие функции выполняет нейтрофил?

Что же делает нейтрофил? Каково его предназначение? Основная роль нейтрофила — защитная. Эта защитная функция реализуется за счет способности к фагоцитозу. Фагоцитоз — это процесс, в течение которого нейтрофил подходит к болезнетворному агенту (бактерии, вирусу), захватывает его, помещает внутрь себя и при помощи ферментов своих гранул убивает микроб. Один нейтрофил способен поглотить и обезвредить 7 микробов. Помимо этого данная клетка участвует в развитии воспалительной реакции. Таким образом, нейтрофил — одна из клеток, обеспечивающих иммунитет человека. Работает нейтрофил, осуществляя фагоцитоз, в сосудах и тканях.

Эозинофилы, внешний вид, строение и функции

Как выглядит эозинофил? Почему так называется?

Эозинофил, как и нейтрофил, имеет округлую форму и палочковидную или сегментарную форму ядра. Гранулы, расположенные в цитоплазме данной клетки, достаточно крупные, одинакового размера и формы, окрашиваются в ярко — оранжевый цвет, напоминая красную икру. Гранулы эозинофила окрашиваются красителями, имеющими кислую реакцию (рН эозинофил — имеет сродство к эозину.

Где формируется эозинофил, сколько он живет?

Как и нейтрофил, эозинофил образуется в костном мозгу из клетки — предшественницы — эозинофильного миелобласта. В процессе созревания проходит те же стадии, что и нейтрофил, однако имеет другие гранулы. Гранулы эозинофила содержат ферменты, фосфолипиды и белки. После полного созревания эозинофилы живут несколько дней в костном мозгу, затем выходят в кровь, где циркулируют 3 — 8 часов. Из крови эозинофилы уходят в ткани, контактирующие с внешней средой — слизистые оболочки дыхательных путей, мочеполового тракта и кишечника. В общей сложности эозинофил живет 8 — 15 суток.

Что делает эозинофил?

Как и нейтрофил, эозинофил осуществляет защитную функцию благодаря способности к фагоцитозу. Нейтрофил подвергает фагоцитозу болезнетворные агенты в тканях, а эозинофил на слизистых дыхательных и мочевыводящих путей, а также кишечника. Таким образом, нейтрофил и эозинофил выполняют сходную функцию, только в разных местах. Поэтому эозинофил также является клеткой, обеспечивающей иммунитет.

Отличительной чертой эозинофила является его участие в развитии аллергических реакций. Поэтому у людей, имеющих аллергию на что — либо обычно повышается количество эозинофилов в крови.


Базофил, внешний вид, строение и функции

Как они выглядят? Почему так называются?

Данный вид клеток в крови самый малочисленный, их содержится лишь 0 — 1% от общего числа лейкоцитов. Имеют округлую форму, палочкоядерное или сегментоядерное ядро. В цитоплазме содержатся различные по величине и форме гранулы темно — фиолетового цвета, которые имеют внешний вид, напоминающий черную икру. Данные гранулы называются базофильной зернистостью. Зернистость названа базофильной, поскольку окрашивается красителями, имеющими щелочную (basic) реакцию (рН >7).Да и вся клетка названа так, потому что имеет сродство к основным красителям: базофил — basic.

Читайте также:  Очень низкий гемоглобин может быть сахарный диабет

Откуда берется базофил?

Базофил также образуется в костном мозгу из клетки — предшественницы — базофильного миелобласта. В процессе созревания проходит те же стадии, что и нейтрофил и эозинофил. Гранулы базофила содержат ферменты, регуляторные молекулы, белки, участвующие в развитии воспалительной реакции. После полного созревания базофилы выходят в кровь, где живут не более двух суток. Далее эти клетки покидают кровяное русло, уходят в ткани организма, однако что происходит с ними там — на сегодняшний день неизвестно.

Какие функции возложены на базофил?

Во время циркуляции в крови базофилы участвуют в развитии воспалительной реакции, способны уменьшать свертывание крови, а также принимают участие в развитии анафилактического шока (вид аллергической реакции). Базофилы продуцируют специальную регуляторную молекулу интерлейкин IL- 5, которая увеличивает количество эозинофилов в крови.

Таким образом, базофил — клетка, участвующая в развитии воспалительных и аллергических реакций.

Моноцит, внешний вид, строение и функции

Что такое моноцит? Где он вырабатывается?

Моноцит является агранулоцитом, то есть в данной клетке отсутствует зернистость. Это крупная клетка, немного треугольной формы, имеет большое ядро, которое бывает округлой формы, бобовидной, лопастное, палочковидное и сегментированное.

Моноцит образуется в костном мозгу из монобласта. В своем развитии проходит несколько стадий и несколько делений. В итоге зрелые моноциты не имеют костномозгового резерва, то есть после образования сразу выходят в кровь, где и живут 2 — 4 суток.

Макрофаг. Что это за клетка?

После этого часть моноцитов погибает, а часть уходит в ткани, где немного видоизменяется — «дозревает» и становится макрофагами. Макрофаги — это самые большие клетки в крови, которые имеют ядро овальной или округлой формы. Цитоплазма голубого цвета с большим количеством вакуолей (пустот), которые придают ей пенистый вид.

В тканях организма макрофаги живут несколько месяцев. Попав из кровяного русла в ткани, макрофаги могут стать резидентными клетками или блуждающими. Что это значит? Резидентный макрофаг все время своей жизни проведет в одной и той же ткани, на одном и том же месте, а блуждающий постоянно перемещается. Резидентные макрофаги различных тканей организма по-разному называются: например, в печени это купферовские клетки, в костях — остеокласты, в головном мозгу — микроглиальные клетки и т.д.

Что делают моноциты и макрофаги?

Какие же функции выполняют эти клетки? Моноцит крови продуцирует различные ферменты и регуляторные молекулы, причем эти регуляторные молекулы могут способствовать как развитию воспаления, так и, наоборот, тормозить воспалительную реакцию. Что делать в данный конкретный момент и в определенной ситуации моноциту? Ответ на этот вопрос не зависит от него, необходимость усилить воспалительную реакцию или ослабить принимается организмом в целом, а моноцит лишь выполняет команду. Помимо этого моноциты участвуют в заживлении ран, помогая ускорить этот процесс. Также способствуют восстановлению нервных волокон и росту костной ткани. Макрофаг же в тканях сосредоточен на выполнении защитной функции: он фагоцитирует болезнетворные агенты, подавляет размножение вирусов.

Лимфоцит внешний вид, строение и функции

Внешний вид лимфоцита. Этапы созревания.

Лимфоцит — округлая клетка различных размеров, имеющая крупное круглое ядро. Лимфоцит образуется из лимфобласта в костном мозгу, так же как и другие клетки крови, несколько раз делится в процессе созревания. Однако в костном мозгу лимфоцит проходит лишь «общую подготовку», после чего окончательно созревает в тимусе, селезенке и лимфоузлах. Такой процесс созревания необходим, поскольку лимфоцит — это иммунокомпетентная клетка, то есть клетка, обеспечивающая всё разнообразие иммунных реакций организма, создавая тем самым его иммунитет.

Лимфоцит, прошедший «специальную подготовку» в тимусе, называется Т — лимфоцит, в лимфоузлах или селезенке — В — лимфоцит. Т — лимфоциты меньше В — лимфоцитов по размеру. Соотношение Т и В — клеток в крови 80% и 20% соответственно. Для лимфоцитов кровь является транспортной средой, которая доставляет их к тому месту в организме, где они необходимы. Живет лимфоцит в среднем 90 дней.

Что обеспечивают лимфоциты?

Основная функция и Т- , и В-лимфоцитов — защитная, которая осуществляется за счет участия их в иммунных реакциях. Т — лимфоциты преимущественно фагоцитируют болезнетворные агенты, уничтожая вирусы. Иммунные реакции, осуществляемые Т-лимфоцитами, называются неспецифической резистентностью. Неспецифической она является потому, что в отношении всех болезнетворных микробов эти клетки действуют одинаково.

В — лимфоциты, напротив, уничтожают бактерии, вырабатывая против них специфические молекулы — антитела. На каждый вид бактерий В — лимфоциты вырабатывают особенные антитела, способные уничтожать только этот вид бактерий. Именно поэтому В — лимфоциты формируют специфическую резистентность. Неспецифическая резистентность направлена в основном против вирусов, а специфическая — против бактерий.

Подробную информацию о заболеваниях крови читайте в статье: Лейкоз

Участие лимфоцитов в формировании иммунитета

После того как В — лимфоциты однажды встречались с каким-либо микробом, они способны формировать клетки памяти. Именно наличие таких клеток памяти обуславливает устойчивость организма к инфекции, вызываемой данной бактерий. Поэтому с целью формирования клеток памяти используют прививки против особенно опасных инфекций. В этом случае в организм человека в виде прививки вводится ослабленный или мертвый микроб, человек переболевает в легкой форме, в результате формируются клетки памяти, которые и обеспечивают устойчивость организма к данному заболеванию на протяжении всей жизни. Однако некоторые клетки памяти сохраняются на всю жизнь, а некоторые живут определенный промежуток времени. В этом случае прививки делают несколько раз.

Тромбоцит, внешний вид, строение и функции

Структура, образование тромбоцитов, их виды

Тромбоциты — маленькие клетки круглой или овальной формы, не имеющие ядра. При активации образуют «выросты», приобретая звездчатую форму. Образуются тромбоциты в костном мозгу из мегакариобласта. Однако образование тромбоцитов имеет особенности, нехарактерные для других клеток. Из мегакариобласта образуется мегакариоцит, который является самой большой клеткой костного мозга. Мегакариоцит имеет огромную цитоплазму. В результате созревания в цитоплазме вырастают разделительные мембраны, то есть происходит разделение единой цитоплазмы на небольшие фрагменты. Данные небольшие фрагменты мегакариоцита «отшнуровываются», и это и есть самостоятельные тромбоциты.Из костного мозга тромбоциты выходят в кровоток, где живут 8 — 11 дней, после чего гибнут в селезенке, печени или легких.

В зависимости от диаметра тромбоциты делят на микроформы, имеющие диаметр около 1,5 микрон, нормоформы с диаметром 2 — 4 микрона, макроформы — диаметр 5 микрон и мегалоформы — диаметром 6 — 10 микрон.

За что отвечают тромбоциты?

Эти маленькие клетки выполняют очень важные функции в организме. Во-первых, тромбоциты поддерживают целостность сосудистой стенки и помогают ее восстановлению при повреждениях. Во-вторых, тромбоциты останавливают кровотечение, образуя тромб. Именно тромбоциты первыми оказываются в очаге разрыва сосудистой стенки и кровотечения. Именно они, слипаясь между собой, образуют тромб, который «заклеивает» поврежденную стенку сосуда, тем самым, останавливая кровотечение.

Подробнее о нарушениях свертываемости крови читайте в статье: Гемофилия

Таким образом, клетки крови являются важнейшими элементами в обеспечении основных функций человеческого организма. Тем не менее, некоторые их функции по сей день остаются неизученными.

Автор: Наседкина А.К.

Источник