Комплекс гемоглобина с углекислым газом

Гликированный гемоглобин и его норма

Гликированный гемоглобин и его норма

Гликированный гемоглобин — это один из показателей биохимического анализа крови. Позволяет выявить среднее значение уровня сахара в крови за последние три месяца. В анализах может обозначаться как HbA1C или A1C.

Содержание:

  • Кому и как часто нужно сдавать кровь на гликированный гемоглобин

  • Какой уровень HbA1C считается нормой

  • Как правильно сдавать анализ на гликированный гемоглобин

Знать его значение важно для того, чтобы своевременно выявить сахарный диабет,контролировать течение заболевания и эффективность применяемой терапии.

Кому и как часто нужно сдавать кровь на гликированный гемоглобин

Исследование крови на гликированный гемоглобин дает основные сведения о состоянии и намного удобнее иных анализов, позволяет выявить несоблюдение режима питания и плохой контроль сахара со стороны пациента.

Результат выражается в процентах. Например, уровень может быть 6,5%. Цифра показывает долю гемоглобина, соединившегося с глюкозой, то есть гликированного. Токсины, образующиеся в результате реакции в избытке, дают осложнения на почки, органы зрения и нижние конечности. Оставшиеся 93,5% вещества остаются свободными и продолжают доставлять кислород в ткани.

Для выявления гестационного диабета у беременных не подходит, так как показывает повышение сахара с опозданием. Анализ показан женщинам, планирующим рождение ребенка.

Всем здоровым людям по достижении 45 лет измерять показатель гликированного гемоглобина достаточно один раз в три года. Это позволит выявить диабет II типа на ранней стадии.

До 45 лет регулярная сдача анализа нужна при нахождении в группе риска:

  • По ожирению или нахождению на учете по излишней массе тела.

  • При малоподвижном образе жизни.

  • Если среди близких родственников есть страдающие сахарным диабетом.

  • При обнаружении толерантности к глюкозе или уровне гликированного гемоглобина более 5,7%.

  • При наличии диагноза артериальная гипертензия.

  • Если в период беременности был гестационный диабет.

  • Присутствует уменьшение чувствительности к инсулину.

При высоком риске развития сахарного диабета сдавайте анализ на установление уровня гликированного гемоглобина не режеодного раза в год.

При хорошо контролируемом течении, когда показатель удается удерживать на уровне не более 7%, анализ сдают раз в 6 месяцев.

На начальных этапах терапии и при изменении схемы лечения HbA1C контролируют ежеквартально.

Лицам старше 60 лет нужно сдавать анализ ежегодно, а при ухудшении зрения и общего самочувствия, подозрении на сахарный диабет — безотлагательно.

Какой уровень HbA1C считается нормой

Официальные нормы показателя одинаковы как для мужчин, так и для женщин. Не зависит он и от возраста с небольшими исключениями.

Нормальнымсчитается уровень гликированного гемоглобина до 5,7%. Лучшим считается показатель 5,5%.

Нахождение результата в диапазоне 5,7%-6,4% свидетельствует о риске развитиясахарного диабета II типа. В данном случае важно принять меры для снижения вероятности заболеть, проконсультироваться у врача. При уровне до 6% обязателен переход на низкоуглеводную диету.

Показатель 5,6-5,9% считается слегка повышенным, какие-либо симптомы нарушения обмена углеводов отсутствуют, но может присутствовать лишний вес.

При уровне HbA1C в пределах 6,1-6,4% некоторые специалисты уже ставят диагноз пред диабет и назначают лечение. Если пустить развитие болезни на самотек, то в течение 6-10 лет появятся проблемы с почками, зрением и ногами. Риск смерти от сердечно-сосудистого заболевания в таком случае повышается на 25%. Преддиабетическое состояние требует перехода на здоровый образ жизни.

По результату анализа, показавшему HbA1C более 6,5% возможен сахарный диабет, но требуются дополнительные исследования для подтверждения диагноза. Как правило, он подтверждается. Цифра 6,5-7,5% свидетельствует о патологии средней тяжести.

Для лиц с сахарным диабетомрекомендовано поддерживать показатель на уровне до 7%. Однако удерживание цифры в пределах 5,5-5,7% продлит жизнь и поможет избежать инвалидности.

Показатель от 8% свидетельствует о плохом контроле и стремительном развитии осложнений, вплоть до потери сознания и комы.

Установление и поддержание HbA1C в норме важно для снижения развития опасных осложнений:

  • Инфаркта и инсульта.

  • Диабетической ретинопатии или нейропатии, поражения почек.

У детей с сахарным диабетом желательно поддерживать показатель гликированного гемоглобина на уровне 5,4% до подросткового периода. Цифра 4-5,9% свидетельствует, что болезни нет. 6-7% — течение заболевания контролируется хорошо. При показателе от 7,1% фиксируется тяжелое состояние.

Как правильно сдавать анализ на гликированный гемоглобин

От пациента не требуется особой подготовки перед походом в лабораторию. Данный анализ необязательно сдавать натощак, можно перекусить и попить воды. Кровь берут из вены, а результат выдают на следующий день.

Если анализ сдается для выявления всех биохимических параметров крови, то принимать пищу перед сдачей не следует.

Чтобы получить достоверный результат, сдавайте кровь на исследование в независимой лаборатории, которая занимается диагностикой, но не лечением, и заинтересована в честном результате.

Читайте также:  Высокий гемоглобин у кормящих женщин

На показатель гликированного гемоглобина влияют имеющиеся заболевания и состояния, об их наличии в обязательном порядке нужно сообщить врачу на приеме.

Цифра может получиться завышеннойпри железодефицитной анемии. Занизитьреальный уровень могут:

  • кровотечения, которые были недавно или возникают периодически;

  • недавнее переливание крови;

  • некоторые болезни, например, гемолитические анемии различного генеза.

К сожалению, на протяжении длительного периода гликированный гемоглобин может быть выше нормы, но без проявления симптомов. Поэтому важно регулярно сдавать кровь на анализ и поддерживать показатель на уровне 5,5-5,7% как женщинам, так и мужчинам любого возраста.

Официальная медицина не признает опасность результата в пределах 6%. Но людям, желающим прожить дольше, лучше начинать лечение диабета в легкой форме. Результат свыше 6,5% дает право врачу ставить точный диагноз.

Опубликовано: 27 Января 2021

Автор

Все представленные на сайте материалы предназначены исключительно для образовательных целей и не предназначены для медицинских консультаций, диагностики или лечения. Администрация сайта, редакторы и авторы статей не несут ответственности за любые последствия и убытки, которые могут возникнуть при использовании материалов сайта.

Источник

Гемоглобин: роль в газообмене и процессе дыхания

Комплекс гемоглобина с углекислым газом

Одним из самых сложных процессов, что происходят в организме человека, несомненно, является дыхание. И сложность эта не только в танце легких, благодаря которому человек получает кислород, но и в процессах, с помощью которых этот кислород проникает дальше, в ткани, где превращается в углекислый газ, что отправляется в обратное путешествие. О данных процессах и пойдет речь далее.

Итак, приступим. Человек делает вдох, иии… Далеко не весь кислород поступает в легкие, а затем и в кровь. Часть вдыхаемого воздуха остается в так называемом мертвом пространстве. Мертвое пространство, в свою очередь, делится на анатомическое (дыхательные пути), в котором остается около 30 % вдыхаемого воздуха, и функциональное (вентилируемые, но по каким-то причинам не перфузируемые альвеолы).

Ухудшение альвеолярного газообмена может происходить при неглубоком и частом дыхании (причиной может стать перелом ребер, паралич дыхательной мускулатуры различного генеза и др.), а также при увеличении мертвого пространства, вызванном разнообразными причинами (нарушение перфузии альвеол в результате воспалительных заболеваний легких, удаление доли или целого легкого и др.), при снижении скорости кровотока по альвеолярным капиллярам (ТЭЛА, инфаркт легкого), при наличии диффузионного барьера (отек легких) и в результате ослабления альвеолярной вентиляции при обтурации просвета бронха. Газообмен между легкими и кровью происходит путем диффузии в соответствии с законом Фика. В легочных капиллярах она происходит за счет разности парциальных давлений в альвеолах и эритроцитах.

В альвеолах парциальное давление кислорода значительно превышает таковое для углекислого газа и составляет примерно 13,3 кПа (100 мм рт. ст.) и 5,3 кПа (40 мм рт. ст.) соответственно. Альвеолы омываются приносимой легочными артериями венозной кровью, в которой соотношение парциальных давлений этих двух газов обратно пропорционально и составляет приблизительно 5,3 кПа (40 мм рт. ст.) для кислорода и 6,1 кПа (46 мм рт. ст.) для углекислого газа. В среднем разница парциальных давлений составляет около 8 кПа (60 мм рт. ст.) для кислорода и около 0,8 кПа для углекислого газа.

Как уже было сказано выше, кислород путем диффузии проникает в кровь легочных капилляров. Диффузионное расстояние для кислорода при этом составляет 1-2 мкм, то есть именно на такое расстояние он проникает внутрь капилляра. Обмен крови в легочном капилляре происходит примерно за 0,75 секунды, но этого времени хватает на то, чтобы парциальные давления в альвеолах и в крови пришли в равновесие.

Кровь, в которой показатели парциального давления для кислорода и углекислого газа примерно равны таковым в альвеолах, называется артериализированной. Однако за счет наличия в легких артериовенозных шунтов и притока венозной крови из бронхиальных вен такой она остается недолго. В результате парциальное давление кислорода в аорте составляет примерно 12,0 кПа (как уже было сказано выше, парциальное давление в артериализированной крови равно таковому в альвеолах и составляет 13,3 кПа), а давление углекислого газа меняется незначительно и не приводит к затруднению его диффузии из крови в альвеолы.

Но кислород непосредственно в ткани попадает лишь в крайне незначительных количествах: для свободного перемещения по организму ему необходим транспортер. Эту функцию выполняет содержащийся в эритроцитах белок — гемоглобин. Гемоглобин существует в оксигенированной и неоксигенированной формах. В дезокси-гемоглобине железо находится на уровне порфиринового кольца и стабилизируется электростатическими силами, что обеспечивает поддержание всей структуры. Появившись, кислород начинает «тянуть» за железо, которое переносится на проксимальный гистидин на другом конце полипептидной цепи и меняет структуру всего протеина.

В результате гемоглобин переходит в оксигенированную форму, альфа- и бета-цепи при этом поворачиваются относительно друг друга на 15 градусов, облегчая присоединение остальных молекул кислорода. В итоге каждый из четырех содержащихся в нем атомов двухвалентного железа обратимо связывается с молекулой кислорода, что превращает молекулу гемоглобина в оксигемоглобин. По сравнению с миоглобином гемоглобин имеет низкое сродство к кислороду, однако оно не статично. Так, миоглобин может связывать кислород только одним участком, поэтому кривая его связывания — гипербола. Кривая связывания гемоглобина с кислородом имеет S-образную форму, демонстрируя, что при его связывании с первой молекулой кислорода гемоглобин имеет очень низкое сродство к кислороду, но при связывании последующих молекул кислорода сродство остальных его субъединиц к нему значительно увеличивается и в конечном счете повышается примерно в 500 раз.

Читайте также:  Гемоглобин как привести в норму

Комплекс гемоглобина с углекислым газом

При этом альфа-цепи связывают кислород легче, чем бета-цепи. Этот процесс назван кооперативным взаимодействием. По мере снижения парциального давления кислорода в крови происходит его высвобождение из гемоглобина и поступление в ткани. Например, парциальное давление кислорода в работающих мышцах составляет всего 26 мм рт. ст, и при прохождении эритроцитов через капилляры, кровоснабжающие мышцы, происходит высвобождение и поступление в мышечные клетки примерно ⅓ всего переносимого гемоглобином кислорода. При повышении температуры тела также возрастает потребность в кислороде, что, в свою очередь, стимулирует высвобождение и поступление его в ткани. При снижении температуры, напротив, развивается гипоксия тканей, способствующая компенсаторному увеличению сродства гемоглобина к кислороду.

Гемоглобин также осуществляет перенос от тканей к легким продуктов тканевого дыхания — углекислого газа и ионов водорода. В ходе окислительных процессов в клетке выделяется углекислый газ, в результате гидратации которого образуются ионы водорода, что, в свою очередь, приводит к снижению рН. Давно известно, что снижение рН и повышение концентрации углекислого газа в крови оказывает сильное влияние на способность гемоглобина связывать кислород.

Комплекс гемоглобина с углекислым газом

В периферических сосудах показатели рН низкие, и по мере связывания гемоглобина с ионами водорода и углекислым газом происходит снижение его сродства к кислороду. Это влияние величины рН и концентрации углекислого газа на способность гемоглобина связывать кислород называют эффектом Бора.

Обратная ситуация имеет место в альвеолярных капиллярах, где присоединение кислорода к гемоглобину превращает тот в более сильную кислоту.

При этом сродство гемоглобина к углекислому газу снижается, а повышение кислотности гемоглобина приводит к высвобождению излишка ионов водорода и образованию в крови из бикарбоната угольной кислоты, которая затем распадается на воду и углекислый газ. В обоих случаях углекислый газ из крови поступает в альвеолы, а затем в атмосферу. Данный процесс назван эффектом Холдейна. Стоит отметить, что важную роль в образовании углекислого газа в эритроцитах играет ион хлора, поступающий в плазму крови в обмен на бикарбонат при участии белка-переносчика АЕ1. Данный процесс в англоязычной литературе получил название «Chloride shift» или «перенос Хамбургера».

На сродство гемоглобина к кислороду оказывает влияние и присутствующее в эритроцитах вещество, получившее название 2,3-бисфосфоглицерат (БФГ). Его образование — своего рода побочная реакция анаэробного гликолиза, происходящего в эритроцитах в ходе ферментативного превращения глюкозы в пируват под действием фермента бифосфоглицератмутазы. БФГ способен самостоятельно связываться с неоксигенированной формой гемоглобина, образуя солевой мостик между двумя его бета-субъединицами и снижая сродство к кислороду.

При этом гемоглобин способен связать только одну молекулу БФГ, а при присоединении кислорода БФГ вытесняется из полости. В обычных условиях в эритроцитах крови содержится достаточно большое количество БФГ, которое может увеличиваться в условиях гипоксии (например, у дайверов при погружении на глубину), а также при восхождении на большую высоту. В первые часы подъема концентрация БФГ в эритроцитах будет возрастать, а сродство кислороду снижаться. Но на большой высоте парциальное давление будет значительно ниже такового на уровне моря, а значит, оно снизится и в тканях. При этом БФГ будет облегчать передачу кислорода от гемоглобина к тканям.

Комплекс гемоглобина с углекислым газом

Некоторые вещества способны прочно связываться с гемоглобином или же вовсе менять его структуру. Одним из них является угарный газ, чье сродство к гемоглобину в 200 раз превышает таковое для кислорода. Отравления угарным газом часто происходят в помещениях с печным отоплением, при пожарах и авариях на производстве. Со временем кислород вытесняет угарный газ из гемоглобина, и в легких случаях пациенты помещаются под наблюдение и получают ингаляции с увлажненным кислородом. Необходимой мерой при тяжелых отравлениях угарным газом является переливание эритроцитарной массы.

К веществам, способным изменять структуру гемоглобина, относятся метгемоглобинобразователи — соединения, способные окислять двухвалентное железо в геме до трехвалентного. К ним относятся нитриты, нитраты, некоторые местные анестетики, аминофенолы, хлораты, примахин и некоторые сульфаниламиды. Состояние, характеризующееся появлением в крови окисленного гемоглобина, называют метгемоглобинемией. При высокой метгемоглобинемии капля крови, помещенная на фильтровальную бумагу, имеет характерный коричневый цвет, а при пропускании кислорода через пробирку с такой кровью ее цвет не меняется. Метгемоглобинемия выше 70 % от общего содержания гемоглобина часто приводит к гибели пациента еще до момента постановки диагноза.

Источники:

  1. Harrison’s hematology and oncology Longo, Dan L (Dan Louis), Third edition. New York : McGraw-Hill Education Medical, 2017.
  2. Наглядная физиология, С. Зильбернагль, А. Деспопулос, 2013.
  3. Ленинджер А. Основы биохимии: В 3-х т. Т. 1. /Д. Нельсон, М. Кокс ; Пер. с англ.-М.: БИНОМ: Лаборатория знаний, 2011.- 694 с.
Читайте также:  Упал гемоглобин после инфаркта

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Источник

Карбоксигемоглобин — Carboxyhemoglobin

Гемовая единица карбоксигемоглобина человека, показывающая карбонильный лиганд в апикальном положении, транс к остатку гистидина.

Карбоксигемоглобин orкарбоксигемоглобин (символ COHb или HbCO ) представляет собой стабильный комплекс из окиси углерода и гемоглобин (Hb), который образуется в красных кровяных тельцах при контакте с монооксидом углерода (CO). Карбоксигемоглобин часто ошибочно принимают за соединение, образованное комбинацией диоксида углерода и гемоглобина, которое на самом деле является карбаминогемоглобином . Воздействие малых концентраций CO препятствует способности Hb доставлять кислород в организм, потому что карбоксигемоглобин образуется легче, чем оксигемоглобин (HbO 2 ). CO вырабатывается при нормальном метаболизме и также является обычным химическим веществом. Табакокурение (из-за вдыхания окиси углерода) в несколько раз повышает уровень COHb в крови по сравнению с его нормальной концентрацией.

Сродство гемоглобина для CO

Гемоглобин содержит четыре гем группы, каждая из которых способна обратимо связываться с одной молекулой кислорода. Связывание кислорода с любым из этих сайтов вызывает конформационное изменение в белке, облегчая связывание с каждым из других сайтов. Окись углерода связывается с гемоглобином на тех же участках, что и кислород, но примерно в 210 раз сильнее. Обычно кислород связывается с гемоглобином в легких и выделяется в областях с низким парциальным давлением кислорода (например, в активных мышцах). Когда окись углерода связывается с гемоглобином, она не выделяется так же легко, как кислород. Низкая скорость высвобождения окиси углерода вызывает накопление молекул гемоглобина, связанных с CO, по мере того, как воздействие окиси углерода продолжается. Из-за этого меньше частиц гемоглобина доступно для связывания и доставки кислорода, что вызывает постепенное удушение, связанное с отравлением угарным газом.

Окись углерода как яд

Поскольку COHb выделяет окись углерода медленно, меньше гемоглобина будет доступно для переноса кислорода из легких в остальную часть тела. Превращение большей части Hb в COHb приводит к смерти, известной в медицине как карбоксигемоглобинемия или отравление угарным газом . Меньшие количества COHb приводят к кислородному голоданию организма, вызывая усталость, головокружение и потерю сознания.

COHb имеет период полураспада в крови от 4 до 6 часов. Это время может быть уменьшено до 70-35 минут при введении чистого кислорода (меньшее число применяется, когда вводится кислород с 4-5% CO2, чтобы вызвать гипервентиляцию). Кроме того, лечение в барокамере является более эффективным способом уменьшения периода полужизни COHb, чем введение одного кислорода. Это лечение включает в себя создание давления в камере чистым кислородом при абсолютном давлении, близком к трем атмосферам, что позволяет жидкостям организма вместо поврежденного гемоглобина, связанного с CO, поглощать кислород и передавать свободный кислород гипоксическим тканям. Фактически, потребность в гемоглобине в крови (частично) устраняется. Дополнительный кислород использует преимущество принципа Ле Шателье для ускорения разложения карбоксигемоглобина обратно в гемоглобин:

HbCO + O 2 ⇌ Hb + CO + O 2 ⇌ HbO 2 + CO

COHb увеличивает риск тромба . Считается, что благодаря этому механизму курение увеличивает риск тромбоэмболической болезни.

Беременные курильщицы могут родить детей с меньшей массой тела при рождении. Помимо вазоконстрикции плаценты, существует еще одна теория, согласно которой, поскольку гемоглобин плода поглощает угарный газ быстрее, чем у взрослого, плод курильщика будет страдать от легкой гипоксии, что может замедлить его развитие.

Окись углерода как нормальный биологический метаболит и потенциальный фармацевтический препарат

В биологии окись углерода вырабатывается естественным образом под действием гемоксигеназы 1 и 2 на гем из разложения гемоглобина . Этот процесс производит определенное количество карбоксигемоглобина у нормальных людей, даже если они не дышат угарным газом.

После первого сообщения о том, что окись углерода является нормальным нейромедиатором в 1993 году, а также одним из трех газов, которые естественным образом модулируют воспалительные реакции в организме (два других — оксид азота и сероводород ), монооксид углерода получил большое клиническое внимание как биологический регулятор. Известно, что во многих тканях все три газа действуют как противовоспалительные , вазодилататоры и стимулируют неоваскулярный рост. Однако проблемы являются сложными, поскольку неоваскулярный рост не всегда полезен, поскольку он играет роль в росте опухоли, а также в ущербе от влажной дегенерации желтого пятна , заболевания, при котором курение (основной источник углерода монооксида в крови, в несколько раз больше естественного производства) увеличивает риск от 4 до 6 раз.

Исследования с участием окиси углерода были проведены во многих лабораториях по всему миру на предмет его противовоспалительных и цитопротекторных свойств. Эти свойства потенциально могут быть использованы для предотвращения развития ряда патологических состояний, включая ишемическое реперфузионное повреждение , отторжение трансплантата , атеросклероз , тяжелый сепсис , тяжелая малярия или аутоиммунитет . Были проведены клинические испытания с участием людей. Однако по состоянию на 2009 год результаты еще не были опубликованы.

Основываясь на терапевтическом потенциале монооксида углерода, фармацевтические усилия были сосредоточены на разработке молекул, высвобождающих моноксид углерода и селективных индукторы гемоксигеназы .

Ссылки

Внешние ссылки

  • Карбоксигемоглобин в Национальной медицинской библиотеке США Медицинские предметные заголовки (MeSH)

Источник