Миоглобин отличие от гемоглобина

Разница между гемоглобином и миоглобином

Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым бе

Содержание:

  • Главное отличие
  • Гемоглобин против Миоглобина
  • Сравнительная таблица
  • Что такое гемоглобин?
  • Типы
  • Что такое миоглобин?
  • Ключевые отличия
  • Заключение

Главное отличие

Основное различие между гемоглобином и миоглобином заключается в том, что гемоглобин является глобиновым белком, который переносит кислород ко всем частям организма, а миоглобин является глобиновым белком, который передает кислород только мышечным клеткам.

Гемоглобин против Миоглобина

Дыхание — это фундаментальный процесс жизни. Почти каждый организм нуждается в транспортировке кислорода ко всем клеткам своего тела для своего выживания. Гемоглобин и миоглобин — два основных глобиновых белка в живых организмах, которые связывают кислород и переносят их в клетки. Но между ними существует ряд различий. Гемоглобин переносит кислород из легких во все части или клетки организма позвоночных, а также некоторых беспозвоночных, в то время как миоглобин переносит кислород только в мышечные клетки. Гемоглобин состоит из 4 полипептидных цепей, в то время как миоглобин состоит из одной полипептидной цепи. Гемоглобин находится в кровотоке, а миоглобин — в мышечных клетках.

Сравнительная таблица

ГемоглобинМиоглобин
Гемоглобин является глобиновым белком, который переносит кислород из легких во все части тела.Миоглобин является глобиновым белком, который переносит кислород к мышечным клеткам.
Структура
Имеет тетрамерную структуру.Имеет мономерную структуру.
цепь
Он состоит из 4 цепочек двух разных типов, то есть альфа и бета, дельта, гамма или эпсилон (на основе типов различных типов гемоглобина).Он состоит из одной полипептидной цепи.
Место нахождения
Он расположен по всему телу.Он расположен в мышечных клетках.
Способность связывать
Обладает способностью связываться с CO2, NO, CO, O2 и H +Имеет способность связываться с O2
Количество гемов
У него четыре гема, по одному в каждой из субъединицВ миоглобине есть один гем
Количество молекул кислорода
Четыре молекулы кислорода могут связываться с гемоглобиномОдна молекула кислорода связывается с миоглобином
Молекулярный вес
Его молекулярный вес составляет 64 кДа.Его молекулярная масса составляет 16,7 кДа.
Сродство связывать с кислородом
Обладает низким сродством связываться с кислородомМиоглобин обладает высокой способностью связываться с кислородом
Концентрация в крови
Он имеет высокую концентрацию в эритроцитахИмеет низкую концентрацию в крови
кривая
Он показывает сигмовидную кривую связыванияЭто показывает гиперболическую кривую
Также известен как
Он также известен как HbОн также известен как Мб
функция
Гемоглобин связывает кислород и транспортируется во все части тела через кровь.Миоглобин передает кислород только мышечным клеткам, что обеспечивает помощь во время голодания кислорода.

Что такое гемоглобин?

Гемоглобин является многосубъединичным глобиновым белком с четвертичной структурой и состоит из четырех полипептидных цепей, двух α и двух β субъединиц. Каждая альфа-цепь состоит из 144 остатков, а каждая бета-цепь состоит из 146 остатков. Противоположные субъединицы, такие как альфа и бета, ассоциируются сильнее, чем аналогичные субъединицы альфа-альфа или бета-бета. Это железосодержащий металлопротеин. В гемоглобине каждая из четырех субъединиц присоединена к небелковой протезной гем-группе, где молекула кислорода связывается. Таким образом, это означает, что гемоглобин может связывать четыре молекулы кислорода с четырьмя гем-группами в каждой цепи. Он имеет низкое сродство к кислороду в своем дезоксигенированном состоянии, но когда первая молекула кислорода связывается с гемоглобином, это приводит к изменению его структуры, что облегчает связывание других молекул кислорода. Этот процесс называется аллостерическим (через пространство) взаимодействием / кооперативностью. Гемоглобин обнаружен в избытке в эритроцитах и ​​дает им красный цвет. Это вовлекает в транспортировку кислорода и углекислого газа к или от всех частей тела. Это также вовлекает метаболизм эритроцитов и также поддерживает pH крови.

Типы

  • Гемоглобин А1 (Hb-А1).
  • Гемоглобин А2 (Hb-A2).
  • Гемоглобин А3 (Hb-A3).
  • Эмбриональный гемоглобин.
  • Гликозилированный гемоглобин.
  • Гетоглобин плода (Hb-A1).

Что такое миоглобин?

Миоглобин представляет собой белок мономера глобина, который проявляет вторичную структуру. Он состоит из одной полинуклеотидной цепи, которая состоит из 153 остатков. Он имеет единственную группу heam, присоединенную к своей единственной полипептидной цепи. Таким образом, одна молекула кислорода может связываться с ним. Но его связывающая способность выше, чем у гемоглобина, поэтому он служит в качестве запасающего кислород белка, который высвобождается во время функционирования мышц. Он содержится в мышечных клетках и обеспечивает их кислородом по требованию. Помогает организму в голодных условиях кислорода, особенно в анаэробных условиях. Он также регулирует температуру тела. Миоглобин не имеет никакого типа.

Ключевые отличия

  1. Гемоглобин — это белок глобина, который переносит кислород из легких во все части тела, а миоглобин — это белок глобина, который переносит кислород только в мышечные клетки.
  2. Гемоглобин имеет тетрамерную структуру, в то время как миоглобин является мономером по структуре.
  3. Гемоглобин состоит из 4 полипептидных цепей, тогда как миоглобин состоит из одной полипептидной цепи.
  4. Гемоглобин присутствует в эритроцитах, а миоглобин — в мышцах
  5. Гемоглобин имеет четыре группы гемов, поэтому он может связывать четыре молекулы кислорода, но миоглобин имеет одну группу гемов, поэтому он может связывать одну молекулу кислорода, потому что гем-группа является местом связывания кислорода
  6. Гемоглобинм может связываться с O2, CO2, CO, NO, BPH и H +, тогда как миоглобин может связываться только с O2.
  7. Гемоглобин имеет молекулярную массу 64 кДа, тогда как миоглобин имеет молекулярную массу 16,7 кДа.
  8. Гемоглобин имеет низкое сродство связываться с кислородом, в то время как миоглобин имеет высокое сродство связываться с кислородом.
  9. Гемоглобин участвует в транспортировке кислорода и углекислого газа ко всем частям тела, в метаболизме эритроцитов, а также поддерживает рН крови, в то время как миоглобин находится в мышечных клетках и обеспечивает их кислородом по мере необходимости, а также регулирует температура тела.
Читайте также:  Гемоглобин 144 у женщин при беременности

Заключение

Из вышеприведенного обсуждения делается вывод, что гемоглобин представляет собой тетрамер, состоящий из четырех полинуклеотидных цепей, и транспортирует кислород и диоксид углерода во все части тела, тогда как миоглобин представляет собой мономер, состоящий из одной нуклеотидной цепи, и транспортирует кислород к мышечным клеткам только по требованию. ,

Источник

МИОГЛОБИН

МИОГЛОБИН (myoglobinum; греч, mys, my [os] мышца + лат. globus шарик; Mgb; син.: миогемоглобин, мышечный гемоглобин) — сложный белок красного цвета, относящийся к хромопротеидам; содержится в красных мышцах животных различных классов и видов. Основной функцией М. является накопление кислорода, поступающего в процессе дыхания в мышцы из крови и отдача кислорода по мере необходимости в нем (см. Газообмен).

Факторами, определяющими различия в содержании М., являются видовая принадлежность животных (см. табл.), особенности условий их существования, образ жизни, тип мышцы, степень ее активности, а также трофические влияния нервной системы. Очень высокое содержание М. (до 16-40 г на 100 г высушенной ткани) характерно для водных животных. Значительные количества М. содержатся в красных мышцах нек-рых беспозвоночных (моллюски), в гладких мышцах мускульного желудка птиц, в гладкой мускулатуре бронхов, сосудов, стенок кишечника, а также в паренхиматозных органах, причем последние участвуют в процессах синтеза (печень), распада (селезенка) и выделения пигмента. Однако еще не доказано, что пигмент, выделенный из паренхиматозных органов, идентичен М.

Таблица. Содержание миоглобина в сердечных и скелетных мышцах человека и некоторых классов позвоночных животных (в г на 100 г высушенной ткани)

Класс животных; человек

Мышцы сердца

Скелетные мышцы

Рыбы

0,2-0,5

0, 1-0,4

Амфибии

0, 1-0, 6

0 -0,1

Рептилии

0, 8-2, 6

0,2-2,4

Птицы:

домашние

1, 0-2,0

0,9-1,8

дикие

2,1-6, 5

0, 7-5, 3

Млекопитающие:

домашние

0, 9-4, 4

0,2-8, 5

дикие

1,1-6,2

0,02-5,13

Человек

1,5

1,4-3,9

В крови и моче М. в норме отсутствует. Поэтому его появление в этих биол, жидкостях является признаком заболеваний, сопряженных с деструкцией тканей (инфаркт миокарда, травматические повреждения мышц, генетически обусловленная прогрессивная мышечная дистрофия и т. д.). Определение уровня М. в плазме крови может служить критерием обширности деструкции, динамики процесса и эффективности лечебных мероприятий.

Мол. вес (масса) М. составляет в среднем 17 500, содержание железа 0,34%, Изоэлектрическая точка находится при pH 6,99. М. характеризуется большой растворимостью и высокой устойчивостью к действию щелочей.

Схематическое изображение молекулы миоглобина: цифрами отмечен каждый десятый аминокислотный остаток; светлые кружки — остатки пролина (Про), часто совпадающие с поворотом полипептидной цепи. В виде диска изображена группа гема; буквами С и N обозначены концевые участки цепи, содержащие соответственно свободные карбокси- и аминогруппы.

Схематическое изображение молекулы миоглобина: цифрами отмечен каждый десятый аминокислотный остаток; светлые кружки — остатки пролина (Про), часто совпадающие с поворотом полипептидной цепи. В виде диска изображена группа гема; буквами С и N обозначены концевые участки цепи, содержащие соответственно свободные карбокси- и аминогруппы.

Изучена третичная структура М. и построена пространственная модель его молекулы (рис.). М. состоит из простого белка- глобина, представляющего собой одну полипептидную цепь, в состав к-рой входит 153 аминокислотных остатка, и простетической (небелковой) группы — гема (железопротопорфириновый комплекс, или протогем). Полипептидная цепь глобина М. на 77% представлена альфа-спиральными участками (всего 8 спиралей), к-рые перемежаются с участками неупорядоченной структуры, расположенными в области четырех изгибов полипептидной цепи. Все полярные группы, образованные лизином, аргинином, глутамином, аспарагином, гистидином, треонином, тирозином и триптофаном, находятся на поверхности и соединены с молекулами воды, а неполярные остатки сконцентрированы в центре. Поэтому молекула М. компактна и устойчива к изменениям pH и ионной силы р-ра.

По своим свойствам глобин М. близок к альбуминам. Гем М. расположен в углублении, находящемся на определенном изгибе полипептидной цепи вблизи поверхности молекулы. Это делает гем более доступным различным воздействиям. Одной координационной связью (пятой) гем соединен с гистидиновым остатком альфа-спирали, а шестая координационная связь железа гема может быть занята водой, кислородом, окисью углерода или другими соединениями. При взаимодействии с кислородом (оксигенации) в глобине молекулы М. не происходит структурных изменений. Пигмент мышц не способен соединяться с двуокисью углерода (CO2).

Доказано существование двух конформеров (А и В) нативного состояния М., к-рые отличаются по своим свойствам и структуре. Переход конформера А в конформер В протекает при повышении температуры от 20 до 40° и отражается на активности гема. Высокотемпературный конформер В является менее реакционноспособным.

М. человека и животных имеет неодинаковую форму кристаллов: тонкие, игловидные, собранные в пучки (человек), ромбические таблички (рогатый скот) и др. М. подобно гемоглобину (см.) образует различные производные, отличающиеся друг от друга по спектрам поглощения. При соединении с кислородом М. превращается в оксимиоглобин (MgbO2), в к-ром железо гема является двухвалентным. С помощью метода дифракции рентгеновских лучей показано, что оксигенация М. сопровождается пространственным смещением железа от середины порфиринового кольца по направлению к проксимальному гистидину (F-8) полипептидной цепи на 0,033 нм. В гемоглобине же оксигенация вызывает гораздо большее смещение атома железа (0,04- 0,05 нм) и изменения в четвертичной структуре всей молекулы пигмента крови.

Вдыхание животными воздуха, содержащего окись углерода в повышающихся концентрациях (0,01-0,2%), приводит не только к увеличению содержания карбоксигемоглобина в крови, но и к связыванию окиси углерода миоглобином с образованием карбоксимиоглобина (MgbCO), железо гема к-рого также находится в двухвалентном состоянии. Когда количество карбоксигемоглобина в крови достигает 60%, содержание карбоксимиоглобина в скелетных мышцах составляет 10-50%, а в мышце сердца — от 6 до 44%. MgbCO обнаружен и в мышцах людей, погибших от отравления: угарным газом. Воздействие на М. окислителей обусловливает возникновение метмиоглобина (метMgb). Превращение М. в метMgb при окислении происходит очень легко и при одинаковых условиях в 12-14 раз превышает скорость образовании метгемоглобина. В то же время в мышцах животных эта реакция после внутривенного вливания окисляющих ядов протекает более медленно, чем окисление гемоглобина.

Читайте также:  Гемоглобин и лейкоциты связь

Максимумы полос поглощения М. и его производных расположены при следующих значениях длин волн: для MgbO2 — 582, 542, 415 нм; для Mgb — 602, 560, 436 нм; для MgbCO — 585, 542, 423 нм; для метMgb — 630, 500, 409 нм. Известный другие производные пигмента: сульфмиоглобин, нитроксимиоглобин, цианмиоглобин и т. д. В реакциях сопряженного окисления М. переходит в зеленый пигмент — вердомиоглобин, а при более глубоком распаде — в желчные пигменты (см.).

Биосинтез М. происходит в мышцах со значительно меньшей скоростью по сравнению с гемоглобином. После введения животным меченого железа оно обнаруживается в гемоглобине уже спустя 6-8 дней, а в М. только через месяц. Продолжительность существования М. составляет 80 дней. В процессе эмбриогенеза М. раньше всего появляется в мышце сердца.

В мышцах позвоночных М. локализуется в саркоплазме на уровне диска А и связан электростатически с наружной мембраной митохондрий или саркоплазматического ретикулума (см. Мышечная ткань).

Создаваемый с помощью М. резерв кислорода в мышцах прежде всего определяется концентрацией в них пигмента и его способностью подвергаться оксигенации и деоксигенации. М. поддерживает постоянный уровень оксигенации во время мышечного сокращения, создавая определенный градиент напряжения кислорода между капиллярами и мышечными клетками, обеспечивая, т. о., возможность его утилизации при усилении окислительных процессов в работающих мышцах. Благодаря высокому сродству к кислороду полунасыщение им М. происходит менее чем за 0,1 сек. (при pO2 = 3,3 мм рт. ст.). При pO2, равном 5 мм рт. ст. (минимальное для деятельности цитохромоксидазы), диссоциирует до 40% оксимиоглобина, повышая, т. о., количество кислорода, растворенного в саркоплазме. М. участвует в молекулярном механизме его транспорта в клетку путем создания градиента и ускорения диффузии. Не исключена возможность непосредственного переноса кислорода М. при поступательном движении молекулы пигмента. Благодаря наличию пероксидазных свойств М. обладает ферментативной активностью. Доказана возможность включения М. в работу фосфорилирующей дыхательной цепи в качестве акцептора электронов от восстановленных коферментов пиридинового типа (НАД-H и в меньшей степени НАДФ-Н).

Существующие методы количественной оценки содержания М. включают электрофорез (см.) и ионообменную хроматографию (см.). Разделение М. и гемоглобина достигается благодаря их различной растворимости в 3 М фосфатном буфере при pH 6,6 (гемоглобин при этом значении pH нерастворим). Спектрофотометрическая регистрация количества М. основана на разнице в светопоглощении карбокси- и цианметсоединений М. и гемоглобина в видимой части спектра (см. Спектрофотометрия). Предложены также гистохимические методы определения М., основанные на бензидин-пероксидазной активности пигмента. Они позволяют с достаточной достоверностью выявлять М. в мышечной ткани и устанавливать закономерности в локализации и распределении М. в норме и их изменения при различных патол, состояниях.

Миоглобин в судебно-медицинском отношении

Миоглобин в судебно-медицинском отношении имеет значение в случаях прижизненного поражения скелетных мышц, сопровождающегося высвобождением М. При этом М. накапливается в плазме крови. При концентрации, превышающей 30 мг%, развивается миоглобинурия (см.), к-рая наряду с шоковым и коматозным состоянием, интоксикацией и пр. служит патогенетическим фактором развития миоглобинурийного нефроза (см. Нефротический синдром). Повреждение мышц, сочетающееся с обширными гематомами или внутрисосудистым гемолизом, кроме того, ведет к возникновению гемоглобинемии (см.), приводящей в последующем к миоглобинурии и миоглобинурийному нефрозу. Т. о., миоглобинемия и обусловленные ею процессы служат экспертным критерием поражения скелетной мускулатуры и доказательством его прижизненности.

Миоглобинемия может иметь место при механической травме (одномоментная травма обширных мышечных массивов, так наз. краш-синдром, или синдром раздавливания), отравлении миолитическими ядами, в т. ч. пищевыми (токсический миозит), при нарушении артериального или венозного кровообращения в конечностях (тромбоз или тромбоэмболия крупных артерий, тромбоз вен, синдром жгута, состояние после реплантации конечностей), при длительном пребывании человека в одной и той же позе (позиционное сдавление), при ожогах, обморожениях, при судорожных состояниях (эпилепсия, столбняк и т. д.).

Наличие и содержание М. в крови и моче устанавливают спектрофотометрическим способом или при помощи электрофореза. Для дифференциации пигментов в моче применяют пробу с сульфатом аммония, при к-рой в осадке мочи, содержащем миоглобиновые шлаки, на фильтре наблюдается характерное окрашивание .

Библиография: Атанасов Б. П. Модели конформеров нативного состояния миоглобина, Молек. биол., т. 4, в. 3, с. 348, 1970, библиогр. ; Верболович П. А. и Верболович В. П. Миоглобин и использование кислорода в животном организме, в кн.: Полярографическое определение кислорода в биол, объектах, под ред. В.А. Березовского, с. 123, Киев, 1974, библиогр.; Свадковский Б. С. Острый пигментный нефроз и его судебно-медицинская оценка, М., 1974, библиогр.; Троицкая О. В. Миоглобин, его химическое строение и функции в организме, Вопр, мед. хим., т. 17, в. 5, с. 451, 1971, библиогр.; Murray J. D. On the role of myoglobin in muscle respiration, J. theor. Biol., v. 47, p. 115, 1974, bibliogr.; Wittenberg J. B. Myoglobin — facilitated oxygen diffusion, role of myoglobin in oxygen entry into muscle, Physiol. Rev., v. 50, p. 559, 1970, bibliogr.

П. А. Верболович, В. П. Верболович; М. В. Кисин (суд.-мед.).

Читайте также:  Высокий гемоглобин что нужно есть

Источник

Миоглобин

Миоглобин — белок, который связывает кислород и поставляет его скелетным мышцам. Его концентрация в крови возрастает при повреждении скелетных мышц или миокарда.

Синонимы английские

Myoglobin.

Метод исследования

Иммунотурбидиметрия.

Единицы измерения

Мкг/л (микрограмм на литр).

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 2-3 часов перед исследованием (можно пить чистую негазированную воду).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Миоглобин — белок, который содержится в скелетной мускулатуре и сердечной мышце — миокарде. Использование запасенного О2 в мышечной ткани начинается при выраженном снижении парциального давления кислорода в мышцах. Он способен связывать кислород в мышечных клетках, что дает им энергию для сокращения. В норме миоглобина в крови настолько мало, что он не определяется лабораторными методами. При повреждении скелетных мышц или миокарда миоглобин в больших количествах попадает в кровоток. Он не является специфичным маркером повреждения миокарда, в отличие от креатинкиназы МВ и тропонина, однако реагирует на гибель мышечных клеток сердца одним из первых — через 1-2 часа его концентрация в крови увеличивается.

Миоглобин и гемоглобин относят к гемопротеинам, они содержат порфириновое производное — гем, который обеспечивает их красный цвет и способность взаимодействовать с О2. Гемоглобин ответственен за транспорт кислорода, а миоглобин — за его депонирование. Механизм действия обоих белков обуславливается строением гема, состоящего из двухвалентного железа и порфирина. Именно молекула гема отвечает за тропность белков к кислороду. Миоглобин связывает переносимый гемоглобином кислород, создавая депо О2. Когда в организме начинается кислородное голодание (после тяжелой физической нагрузки), он освобождает связанный кислород и «передает» его окислительным системам клеток, где запускается процесс окислительного фосфорилирования, в результате которого образуется необходимая для работы мышц энергия.

Миоглобин фильтруется почками и выводится из организма с мочой. Если происходит массивное повреждение мышц, например, в результате серьезной травмы, он начинает в больших количествах поступать в кровь и может повреждать почки, вызывая острую почечную недостаточность. При отсутствии воспалений или повреждений мышечной ткани он практически не фиксируется в крови. Это его свойство используется для уточнения диагноза «инфаркт миокарда».

Для чего используется исследование?

Анализ на миоглобин, как правило, назначается вместе с другими маркерами повреждения сердечной мышцы, такими как креатинкиназа МВ, и используется для того, чтобы подтвердить или исключить инфаркт миокарда у пациентов с острой болью в сердце или другими симптомами.

Миоглобин начинает повышаться через 1-2 часа после повреждения миокарда, достигает своего пика через 8-12 часов и к концу дня обычно приходит в норму. Тропонин — «золотой стандарт» в определении инфаркта, так как он является более специфичным, однако преимущество миоглобина состоит в том, что он реагирует максимально рано, тем самым позволяя быстрее поставить диагноз. С другой стороны, необходимо понимать, что миоглобин может повышаться и без повреждения сердечной мышцы. Таким образом, отрицательный результат анализа на миоглобин исключает инфаркт, положительный — требует подтверждения тропонином.

Иногда тест на миоглобин необходим людям с серьезными травмами для того, чтобы определить вероятность поражения почек.

Когда назначается исследование?

Анализ на миоглобин назначается при подозрении на острый инфаркт миокарда. Кровь берут сразу при поступлении пациента в стационар и потом еще несколько раз через каждые 2-3 часа.

Такой тест обычно назначается вместе с другими маркерами повреждения сердечной мышцы, такими как креатинкиназа МВ и тропонин, что позволяет более уверенно судить о наличии или, напротив, отсутствии острого повреждения сердечной мышцы.

Кроме того, это исследование может понадобиться после массивных повреждений скелетной мускулатуры, чтобы оценить риск повреждения почек и острой почечной недостаточности.

Что означают результаты?

Референсные значения: 0 — 70 мкг/л.

Обычно содержание миоглобина в крови настолько несущественно, что даже не может быть измерено.

Повышение уровня миоглобина в крови говорит о недавнем повреждении скелетных или сердечной мышц. Назначение тропонина или креатинкиназы МВ позволяет уточнить причину повышения миоглобина. Если в течение 12 часов боли в грудной клетке повышения миоглобина не произошло, вероятность инфаркта миокарда крайне маловероятна.

Так как миоглобин, помимо сердца, содержится еще в скелетной мускулатуре, он может повышаться и в других ситуациях:

  1. синдром длительного сдавливания (краш-синдром) возникает в результате раздавливания или размозжения мышечной ткани, а также длительного прекращения кровотока по конечности;
  2. любые травмы;
  3. после хирургических операций;
  4. судороги любого происхождения;
  5. любые заболевания, приводящие к повреждению мышц: дерматомиозит, полимиозит, мышечная дистрофия и др.

Что может влиять на результат?

  • Злоупотребление амфетаминами и алкоголем повышает уровень миоглобина.
  • Так как миоглобин выводится через почки, его уровень может быть повышен при почечной недостаточности.



Важные замечания

  • Внутримышечные инъекции и физическая нагрузка не влияют на уровень миоглобина в крови.
  • Повышенный уровень миоглобина — недостаточное основание для постановки диагноза «инфаркт миокарда». Необходима комплексная оценка состояния пациента, которую может провести только врач. При этом учитывается характер болевого синдрома, история развития заболевания, ЭКГ, результаты других лабораторных и инструментальных обследований.
  • В норме миоглобин не определяется в моче, настолько его в ней мало. Если уровень миоглобина повышается так, что его становится возможным измерить, то это указывает на вероятность почечной недостаточности.

Также рекомендуется

  • Тропонин I
  • Креатинкиназа общая
  • Креатинкиназа МВ
  • Аланинаминотрансфераза (АЛТ)
  • Аспартатаминотраснфераза (АСТ)
  • Лактатдегидрогеназа 1, 2 (ЛДГ 1, 2 фракции)

Кто назначает исследование?

Врач общей практики, терапевт, кардиолог.

Источник