Молекула гемоглобина у человека содержит две альфа

Задачи на дигибридное скрещивание. Задачи 266


Задачи по генетике человека

Залача 266.
У человека синдактилия (сращение пальцев) и близорукость передаются как доминантные аутосомные признаки, а пятипалость и нормальное зрение — как рецессивные аутосомные признаки.
Дигетерозиготная женщина вышла замуж за гетерозиготного мужчину с синдактилией, имеющего нормальное зрение.. Какова степень генетического риска рождения ребенка с признаками матери?
Решение:
А — аллель гена синдактилии;
а — аллель пятипалости;
В — аллель гена близорукости:
b =- аллель гена нормальеого зрения;
АаBb — дигетерозигота — синдактилия и близорукость;
Aabb — синдактилия и нормальное зрение.
Схема скрещивания
Р: АаBb    х    Aabb
Г: AB; ab       Ab: ab
   aB; ab
F1: AABb — 12,5%; АаBb — 25%; AAbb — 12,5%; Аabb — 25%; aaBb — 12,5%; aabb — 12,5%.
Наблюдается 6 типов генотипа. Расщепление по генотипу — 1:2:1:2:1:1.
Фенотип:
AABb — синдактилия и близорукость —  12,5%; 
АаBb — синдактилия и близорукость — 25%; 
AAbb — синдактилия и нормальное зрение — 12,5%; 
Аabb — синдактилия и нормальное зрение — 25%; 
aaBb — пятипалость и близорукость — 12,5%; 
aabb — пятипалость и нормальное зрение — 12,5%.
Наблюдаемый фенотип:
синдактилия и близорукость —  37,5%;
синдактилия и нормальное зрение — 37,5% 
пятипалость и близорукость — 12,5%; 
пятипалость и нормальное зрение — 12,5%. 
Наблюдается 4 типа фенотипа. Расщепление по фенотипу — 3:3:1:1.

Выводы:
1) в данном браке степень генетического риска рождения ребенка с признаками матери составляет 37,5% или 3/8. 
 

Задача 267.
Молекула гемоглобина1 у человека содержит две альфа- и две бета-цепи. Альфа-цепь программирует доминантный ген, расположенный в 16-й хромосоме, а бета-цепь – доминантный ген в 11-й хромосоме. Супруги здоровы, но дигетерозиготны по указанным генам. Какой вид взаимодействия генов имеет место в этой ситуации? Может ли у них родиться ребенок с аномальным гемоглобином? Если не может, то почему? А если может, то с какой вероятностью?
Решение:
А — ген продуцирует нормальную альфа-цепь гемоглобина;
а — ген продуцирует аномальную альфа-цепь гемоглобина;
В — ген продуцирует нормальную бета-цепь гемоглобина;
b — ген продуцирует аномальную бета-цепь гемоглобина;
AaBb — дигетерозигота — нормальный гемоглобин.

Схема скрещивания
Р: AaBb      x     AaBb
Г: AB; Ab          AB; Ab
   aB; ab          aB; ab
F1: 1ААВВ — 6,25%; 2ААВb — 12,5%; 2АаВВ — 12,5%; 4АаВb — 25%; 1ААbb — 6,25%; 2Ааbb — 12,5%; 1ааВВ — 6,25%; 2ааВb — 12,5%; 1ааbb — 6,25%.
Наблюдается 9 типов генотипа. Расщепление по генотипу — 1:2:2:4:1:2:1:2:1.  
Фенотипы:
ААВВ — здоровый организм, нормальный гемоглобин — 6,25%; 
ААВb — здоровый организм, нормальный гемоглобин — 12,5%; 
АаВВ — здоровый организм, нормальный гемоглобин — 12,5%; 
АаВb — здоровый организм, нормальный гемоглобин — 25%; 
ААbb — отсутствует бета-цепь гемоглобина, бета-талассемия — 6,25%; 
Ааbb — отсутствует бета-цепь гемоглобина, бета-талассемия — 12,5%; 
ааВВ — отсутствует альфа-цепь гемоглобина, альфа-талассемия — 6,25%; 
ааВb — отсутствует альфа-цепь гемоглобина, альфа-талассемия — 12,5%; 
ааbb — отсутствуют альфа- и бета-цепь гемоглобина, аномальный гемоглобин — 6,25%. 
Наблюдаемый фенотип:
здоровый организм, нормальный гемоглобин — 56,25%;
отсутствует бета-цепь гемоглобина, аномальный гемоглобин — 18,75%; 
отсутствует альфа-цепь гемоглобина, аномальный гемоглобин — 18,75%;
отсутствуют альфа- и бета-цепь гемоглобина, аномальный гемоглобин — 6,25%.
Наблюдается 4 типа фенотипов. Расщепление по фенотипу — 9:3:3:1. 

Выоды:
1) наследование формы гемоглобина осуществляется по аутосомному механизму (наследование признаков, гены которых расположены в неполовых хромосомах — аутосомах);
2) в данной семье может родиться ребенок с аномальным гемоглобином с вероятностью 6,25%.
 

Задача 268. 
У человека карий цвет глаз доминирует над голубым, а наличие веснушек над их отсутствием. Кареглазый мужчина без веснушек, отец которой был голубоглазым, женился на голубоглазой женщине с веснушками, мать которой была без веснушек. Какова вероятность рождения голубоглазого ребенка без веснушек в этой семье?
Решение:
А — карий цвет глаз;
а — голубой цвет глаз;
В — наличие веснушек;
b — отсутствие веснушек.
Так как у кареглазого мужчины без веснушек, отец которого был голубоглазым, является гетерозиготным по признаку цвета глаз — Аа и его генотип — Ааbb. Голубоглазая женщине с веснушками, мать которой была без веснушек, является гетерозиготой по признаку веснушек — (Dd) и её генотип — aaBb.

Схема скрещивания
Р: aaBb   х     Ааbb
Г: aB; ab       Ab; ab
F1: AaBb — 25%; Aabb — 25%; aaBb — 25%; aabb — 25%.
Наблюдается 4 типа генотипа. Расщепление по генотипу — 1:1:1:1. 
Фенотип:
AaBb — кареглазость, наличие веснушек — 25%; 
Aabb — кареглазость, отсутствие веснушек — 25%; 
aaBb — голубоглазость, наличие веснушек — 25%; 
aabb — голубоглазость, отсутствие веснушек — 25%.
Наблюдается 4 типа фенотипа. Расщепление по фенотипу — 1:1:1:1. 

Выводы:
1) вероятность рождения голубоглазого ребенка без веснушек в этой семье составляет 25%.
 

Задача 269.
У человека черный цвет глаз (А) доминирует над голубым (а), а наличие веснушек (В) над отсутствием. Женщина с голубыми глазами и без веснушек выходит замуж за мужчину с черными глазами и веснушками. Известно, что мать мужчины была голубоглазой и у неё были веснушки.
1) Сколько типов гамет образуется у мужчины?
2) Сколько разных фенотипов может быть у детей в этой семье?
3) Сколько разных генотипов может быть у детей в этой семье?
4) Какова вероятность того, что ребёнок будет похож на мать?
5) Какова вероятность того, что ребёнок будет похож на отца?
Решение:
А — ген черного цвета глаз;
а — ген голубоглазости;
В — наличие веснушек;
b — отсутствие веснушек.
Мать дигомозигота по обоим рецессивным признакам, поэтому её генотип имеет вид: ааbb. Так как у мужчины с черными глазами и веснушками мать была голубоглазой и у неё были веснушки, то он будет дигетерозиготен по обоим признакам и его генотип имеет вид: АаBb.

Читайте также:  Гемоглобин при язве желудка и двенадцатиперстной кишки

Схема скрещивания
Р: ааbb    х    АаBb
Г: аb             АB; Ab; aB; аb
F1: АaBb — 25%; Aabbb — 25%; aaBb — 25%; аabb — 25%.
Наблюдается 4 типа генотипа. Расщепление по генотипу — 1:1:1:1.
Фенотип:
АaBb — чёрные глаза и веснушки — 25%; 
Aabbb — чёрные глаза и отсутствие веснушек — 25%; 
aaBb — голубые глаза и веснушки — 25%; 
аabb — голубые глаза и отсутствие веснушек — 25%.
Наблюдается 4 типа фенотипа. Расщепление по фенотипу — 1:1:1:1.

Выводы:
1) у мужчины образуется 4 типа гамет;
2) у детей может быть 4 разных фенотипа;
3) у детей может быть 4 разных генотипа;
4) вероятность того, что ребёнок будет похож на мать составляет 25%;
5) вероятность того, что ребёнок будет похож на отца составляет 25%.
 

Наследование цвета оперения и хохлатости у кур

Задача 270. 
У кур черный цвет пера и хохлатость являются доминантными признаками. Какое потомство можно ожидать от скрещивания черного хохлатого петуха (гомозиготного по двум признакам) с бурой бесхохлатой курицей.
Решение:
А — черный цвет пера;
а — бурый цвет пера;
В — хохлатость;
b — отсутствие хохолка (бесхохлатость).

Схема скрещивания
Р: aabb     x     AABB
Г: аb             АВ
F1: AaBb — 100%.
Фенотип:
AaBb — черный цвет пера и хохлатость 100%.
Наблюдается единообразие поколения в F1.
 

Наследование окраса шерсти и формы ушей у собак
  

Задача 271. 
У собак черная окраска шерсти (А) доминирует над коричневой, а висячие уши (В) — над стоячими. Скрещивали черную собаку с висячими ушами — дигетерозиготную, с коричневой со стоячими ушами. Какова вероятность появления коричневого щенка со стоячими ушами?
Решение:
А — черная окраска шерсти;
а — коричневая окраска шерсти;
В — висячие уши;
b — стоячие уши;
АаBb — дигетерозигота — черная собака с висячими ушами;
aabb — коричневая собака со стоячими ушами.

Схема скрещивания
Р: АаBb   х    aabb
Г: AB; Ab      ab
   aB; ab
F1: AaBb — 25%; Аabb — 25%; aaBb — 25%; aabb — 25%.
Наблюдается 4 типа генотипа. Расщепление по генотипу — 1:1:1:1. 
Фенотип:
AaBb — черная собака с висячими ушами — 25%; 
Аabb — черная собака со стоячими ушами — 25%; 
aaBb — коричневая собака с висячими ушами — 25%;
aabb — коричневая собака со стоячими ушами — 25%. 
Наблюдается 4 типа фенотипа. Расщепление по фенотипу — 1:1:1:1. 

Выводы:
1) вероятность появления коричневого щенка со стоячими ушами в этой вязке составляет 25%.

1Нормальный человеческий гемоглобин HbA состоит из четырех белковых цепей двух разных видов: две альфа-цепи и две бета-цепи. Соответственно, если нарушен синтез альфа-цепей (при этом в крови появляется аномальный гемоглобин, состоящий из четырех альфа-цепей), то говорят об альфа-талассемии. Если же нарушен синтез бета-цепей, то речь идет о бета-талассемии; при этом образуются другие варианты гемоглобина, которые не содержат ?-цепей.

Источник

Гемоглобинопатия — аномальные варианты гемоглобина | Университетская клиника

Гемоглобинопатия – это наследственные заболевания с единой проблемой – образованием аномальной формы гемоглобина, например, серповидноклеточная анемия S и талассемия.

Гемоглобинопатии носят эндемический характер – они возникают в определенном географическом районе, например, в Средиземноморье, Африке, Юго–Восточной Азии. В нашей стране они тоже встречаются.

Что такое гемоглобинопатия

Гемоглобинопатии – это заболевания, вызванные выработкой и присутствием аномальной формы гемоглобина. 

Гемоглобин состоит из гема (частей, содержащих железо) и глобина (частей белка, состоящих из аминокислотных цепей). Молекулы гемоглобина (Hb или Hgb) находятся в красных кровяных тельцах. Их задача – связывать кислород в легких и передавать его тканям и органам, где они его выделяют.

Строение гемоглобина

Существует несколько типов цепей глобина: альфа, бета, дельта и гамма.

Типы нормального гемоглобина:

  • A – HbA: составляет около 95-98% от общего гемоглобина у взрослых людей. Он содержит 2 альфа (α) цепи и две бета (β) цепи.
  • A2 – HbA2: составляет около 2-3% от общего гемоглобина. Он содержит 2 цепи альфа (α) и две цепи дельта (δ).
  • F (HbF): составляет около 2% от общего гемоглобина взрослого человека. Он содержит 2 альфа (α) цепи и две гамма (γ) цепи. Этот гемоглобин в основном вырабатывается у плода, его производство значительно снижается вскоре после рождения и достигает уровня взрослого человека в течение 1-2 лет.

К гемоглобинопатиям относятся: структурные варианты гемоглобина, гемоглобин S, серповидноклеточная анемия, гемоглобинопатия C, гемоглобинопатия E, талассемия, гемоглобин Бартс, наследственная персистенция гемоглобина плода.

Читайте также:  Почему резко понижается гемоглобин

Причины развития гемоглобинопатии

Гемоглобинопатии возникают в случае генетических изменений генов глобина, которые приводят к изменению аминокислот, составляющих белок глобина. Эти изменения влияют на:

  • структуру гемоглобина, например, гемоглобин S, который вызывает серповидно-клеточную анемию;
  • его поведение;
  • количество продуцируемого вещества (талассемия);
  • стабильность. 

Серповидно-клеточная анемия

Существует четыре гена, кодирующих цепь альфа-глобина, и два гена, кодирующих цепь бета-глобина. Наиболее частым заболеванием, связанным с изменением альфа-цепи, является альфа-талассемия. Его тяжесть зависит от количества пораженных генов.

Талассемия характеризуется снижением продукции одной из цепей глобина, дисбалансом между альфа- и бета-цепями в гемоглобине A (альфа-талассемия) или увеличением малых форм, таких как Hb A2 или Hb F (бета-талассемия).

Изменения бета-цепей гемоглобина являются врожденными, аутосомно-рецессивными. Это означает, что больной человек должен иметь две дефектные копии гена, каждая от одного из родителей. Если один ген нормален, а другой дефектен, человек гетерозиготен, и мы называем его носителем. Аномальный ген может быть передан любому из потомков. Если рассматриваемый человек является гетерозиготным носителем, он может не иметь никаких симптомов и носительство не влияет на его здоровье.

Если происходят две модификации одного и того же бета-гена, человек гомозиготен по этому гену. Его организм может производить дефектный гемоглобин – возникает гемоглобинопатия с симптомами и потенциальными осложнениями. Степень тяжести зависит от генетической мутации и варьируется от случая к случаю. Копию гена можно передать потомству.

Если два аномальных бета-гена являются врожденными, человек является двойным, смешанным гетерозиготным. У него будут симптомы одной или обеих гемоглобинопатий. Один из аномальных бета-генов будет передаваться каждому из потомков.

Были идентифицированы сотни гемоглобинопатий в бета-цепях. Хотя лишь некоторые из них являются общими и клинически значимыми.

Клинические признаки и симптомы

Признаки и симптомы различаются по типу гемоглобинопатии и возможному сочетанию нескольких гемоглобинопатий. Некоторые приводят к усилению распада эритроцитов (гемолизу), уменьшению их общего количества и развитию анемии.

Клинические признаки включают:

  • слабость, утомляемость;
  • недостаток энергии;
  • желтуха;
  • бледность кожи.

Утомляемость

К серьезным клиническим признакам относятся:

  • приступы сильной боли;
  • удушье; 
  • увеличение селезенки;
  • нарушения роста у детей;
  • боль в верхней части живота (вызванная желчными камнями).

Удушье

Общие гемоглобинопатии

Красные кровяные тельца, содержащие аномальный гемоглобин, могут не переносить кислород достаточно эффективно. Они могут разрушаться раньше (чем в здоровых клетках крови) и развиваться гемолитическая анемия. Выявлены сотни гемоглобинопатий, но лишь некоторые из них являются общими и клинически значимыми. 

Одной из наиболее распространенных гемоглобинопатий является серповидно-клеточная анемия с присутствием гемоглобина S. Это приводит к изменению формы – серповидно-клеточной – эритроцитов и снижению их выживаемости. Гемоглобин С может вызвать легкую гемолитическую анемию. Гемоглобин E обычно не приводит к развитию каких-либо или только очень легких клинических симптомов.

  • Талассемия: самая распространенная генетическая аномалия в мире. Она часто встречается в Средиземноморье, на Ближнем Востоке и в Юго-Восточной Азии. Более легкая форма талассемии также встречается, например, у людей, родившихся в Чехии.
  • Гемоглобин S: это основной гемоглобин людей с серповидно-клеточной анемией. В среднем эта мутация есть в одном из двух бета-генов у 8% американцев и африканцев. Возникновение этих мутаций в наших широтах встречаеся редко. Пациенты с заболеванием HbS имеют две аномальные цепи бета (b s) и две нормальные цепи альфа (a). Когда эритроциты, содержащие гемоглобин S, подвергаются действию пониженного количества кислорода (как это может быть в случае повышенной физической нагрузки или инфекционного заболевания легких), они деформируются, принимая форму полумесяца. Серповидные эритроциты могут блокировать периферические кровеносные сосуды и вызывать нарушения кровотока и боль. У них пониженная способность переносить кислород и более короткий срок жизни. Одна копия б не вызывает клинических проявлений, если не сочетается с другой мутацией гемоглобина, такой как HbC (b C) или бета-талассемия.
  • Гемоглобин C: около 25% жителей Западной Африки и 2-3% афроамериканцев гетерозиготны по гемоглобину C (у них есть одна копия B C). Но заболевают только гомозиготные люди с обоими дефектными генами (b C). Обычные симптомы – легкая гемолитическая анемия с небольшим или средним увеличением селезенки.
  • Гемоглобин E: вторая по распространенности гемоглобинопатия в мире с изменением бета-цепей. Патология очень часто встречается в Юго-Восточной Азии, особенно в Камбодже, Лаосе и Таиланде, а также частично в Северо-Восточной Азии. Есть случаи и в нашей стране. Люди с гомозиготным Hb E (две копии b E) обычно имеют легкую гемолитическую анемию, микроциты (маленькие красные кровяные тельца) и слегка увеличенную селезенку. Одна копия гемоглобина E не вызывает клинических признаков, если не сочетается с другой мутацией, такой как одна из бета-талассемии.

Талассемия

Необычные гемоглобинопатии

Существует ряд гемоглобинопатий, некоторые из которых не проявляются – они не вызывают никаких клинических признаков или симптомов. Другие, в свою очередь, влияют на функциональность и / или стабильность молекулы гемоглобина. Примерами являются гемоглобин D, гемоглобин G, гемоглобин J, гемоглобин M и гемоглобин Constant Spring. Мутации в гене альфа-цепи глобина приводят к образованию аномально длинных альфа (а) цепей, которые вызывают нестабильность в молекуле гемоглобина.

 Другие примеры мутаций бета-цепи:

  • Гемоглобин F: Hb F в основном вырабатывается в организме будущего ребенка (плода), и его функция заключается в переносе кислорода в среде с низким содержанием кислорода. Продукция гемоглобина F снижается сразу после рождения и стабилизируется на уровне взрослого человека до 1-2 лет. Гемоглобин F может быть повышен при некоторых врожденных заболеваниях. При бета-талассемии его уровень может быть нормальным или повышенным, но часто повышен при серповидно-клеточной анемии и сочетании серповидно-клеточной анемии с бета-талассемией. Пациенты с серповидно-клеточной анемией и повышенным Hb F часто имеют более легкое течение болезни, поскольку Hb F предотвращает серповидное движение красных кровяных телец. Уровни Hb F повышены в редком состоянии, называемом врожденным постоянством выработки гемоглобина плода (HPFH). Люди с повышенным уровнем гемоглобина F не имеют клинических признаков. HPFH вызывается разными генными мутациями у разных этнических групп. Hb F также может быть повышен при некоторых приобретенных состояниях, влияющих на выработку красных кровяных телец. Например, лейкемия и миелопролиферативные заболевания часто сопровождаются небольшим повышением уровня гемоглобина F.
  • Гемоглобин H: HbH – это аномальный гемоглобин, который возникает в некоторых случаях альфа-талассемии. Его образование является ответом на фундаментальный недостаток альфа (а) цепей. Hb H состоит из четырех цепей бета (b) глобина. Хотя каждая из цепей бета-глобина нормальна, комплекс из четырех цепей бета нормально не функционирует. Обладает повышенным сродством к кислороду, плохо выделяет кислород клеткам тканей. Присутствие гемоглобина H также связано со значительным распадом эритроцитов (гемолизом), который возникает в результате осаждения нестабильного гемоглобина внутри красных кровяных телец.
  • Hemoglobin Barts: Hb Barts вырабатывается в организме будущего ребенка с альфа-талассемией при условии, что все четыре гена, отвечающие за производство гемоглобина альфа, отсутствуют. Таким образом, не может образовываться гемоглобин HbA, HbA 2 и HbF. Гемоглобин Бартс состоит из четырех гамма (g) цепей и имеет высокое сродство к кислороду. Это состояние несовместимо с жизнью и обычно приводит к внутриутробной гибели плода.
Читайте также:  Как поднять гемоглобин гречишным медом

Некоторые люди могут унаследовать два гена с разными мутациями, каждый от одного из родителей. Таких людей называют двойными или смешанными гетерозиготами.

Обследование: лабораторные тесты

Исследование на гемоглобинопатию проводится в следующих случаях:

  • Выявление гемоглобинопатий у бессимптомных родителей больных детей.
  • Выявление гемоглобинопатий у пациента с необъяснимой анемией, микроцитозом и / или гипохромией. Анализ может быть выполнен как часть теста на анемию.
  • Скрининг на гемоглобинопатии у новорожденных – только в США и некоторых регионах с повышенной заболеваемостью.
  • Пренатальный скрининг проводится в некоторых регионах с высокой частотой гемоглобинопатий (особенно в Африке).

На результаты тестов на гемоглобинопатию может повлиять переливание крови. Поэтому после переливания крови, прежде чем сдать анализ, пациенту следует подождать несколько месяцев. Тем не менее пациентам с серповидно-клеточной анемией после переливания крови рекомендуется сдать анализ крови, чтобы увидеть, достаточно ли гемоглобина в крови, и снизить риск повреждения организма серповидными эритроцитами.

Обследование гемоглобинопатий основано на обнаружении и оценке «нормальности» эритроцитов и гемоглобина в эритроцитах, а также на исследовании конкретной мутации гена. Каждый из тестов является частью головоломки, предоставляющей важную информацию о том, какая гемоглобинопатия присутствует. Для проверки гемоглобинопатии используются следующие тесты:

  • Анализ крови. Анализ крови дает быструю информацию о клетках, циркулирующих в крови. Помимо прочего, результаты анализа крови показывают, сколько красных кровяных телец (эритроцитов) содержится в крови, какого они размера и формы, а также сколько там гемоглобина. Размер эритроцита определяет средний объем эритроцитов (MCV). Обнаружение пониженного MCV (микроцитоз, наличие небольших эритроцитов) часто сначала указывает на возникновение талассемии. Если MCV низкий и дефицит железа исключен, пациенты могут быть носителями талассемии или гемоглобинопатии, которые также вызывают микроцитоз (например, HbE).
  • Анализ ДНК. Этот анализ используется для скрининга мутаций и делеций в альфа- и бета-областях глобиновых генов. Иногда обследуются все члены семьи. Задача в том, чтобы определить конкретный тип мутации, встречающейся в семье, и выявить всех носителей. ДНК-тесты не являются обычным тестом, но они могут помочь диагностировать гемоглобинопатию и выявить носителей.
  • Мазок периферической крови (микроскопический дифференциальный подсчет лейкоцитов, считываемый по мазку периферической крови). Тест проводится путем формирования тонкого слоя крови на предметном стекле и окрашивания его специальными красителями. Образец крови, обработанный таким образом, затем оценивается лаборантом под микроскопом. Специалист определяет количество и тип белых и красных кровяных телец и тромбоцитов. Оценивает, являются ли они нормальными и зрелыми.

Анализ крови

При гемоглобинопатии эритроциты могут быть в следующих формах:

  • Микроциты (меньше нормального).
  • Гипохромные (более бледные, с пониженным гемоглобином).
  • Разных размеров (анизоцитоз) и формы (пойкилоцитоз, например, серповидно-клеточные клетки).
  • С ядром (в незрелых эритроцитах) или с включениями.
  • С неравномерным распределением гемоглобина (клетки-мишени, которые под микроскопом выглядят как «бычий глаз»).

Наличие более высокого процента аномально выглядящих эритроцитов означает более высокую вероятность наличия заболевания.

С помощью тестов на гемоглобинопатию и их комбинаций можно диагностировать наиболее распространенные гемоглобинопатии. Эти тесты могут помочь выявить пациентов с сочетанием различных гемоглобинопатий (смешанные гетерозиготы).

Лечение гемоглобинопатии

В настоящее время гемоглобинопатии – неизлечимые заболевания. Но возможно устранять симптомы заболевания. Цель – облегчить боль и минимизировать возможные осложнения. Также существуют лекарства, повышающие уровень гемоглобина F, что облегчает некоторые симптомы. 

Однако исследования и поиск более безопасных и эффективных методов лечения все еще продолжается. В будущем для восстановления мутированного гена можно будет использовать трансплантацию стволовых клеток или генную терапию. Для того чтобы эти методы могли широко использоваться в будущем, необходимы дальнейшие обширные исследования.

Источники: БЕРТИС, Калифорния, ЭШВУД, Эр., Брунс, Делавэр, (ред.), Учебник Тиц по клинической химии и молекулярной диагностике. 4-е издание Луи: Эльзевье-Сондерс, 2006; LOTHAR, T. Клиническая лабораторная диагностика. Франкфурт: TH-Books, 1998; MASOPUST, J. Клиническая биохимия – требования и оценка биохимических исследований, часть I. и часть 2, Прага: Каролинум, 1998; RACEK, J., et al. Клиническая биохимия. 2. переработанное издание, Прага: Гален, 2006; Каспер Д.Л., Браунвальд Э., Фаучи А.С., Хаузер С.Л., Лонго Д.Л., редакторы Джеймсон Д.Л., 2005.

Поделиться ссылкой:

Источник