Окисление липидов и холестерин

ипиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

Оглавление темы «Обмен веществ и энергии. Питание. Основной обмен.»:

1. Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.

2. Белки и их роль в организме. Коэффициент изнашивания по Рубнеру. Положительный азотистый баланс. Отрицательный азотистый баланс.

3. Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

4. Бурый жир. Бурая жировая ткань. Липиды плазмы крови. Липопротеины. ЛПНП. ЛПВП. ЛПОНП.

5. Углеводы и их роль в организме. Глюкоза. Гликоген.

6. Минеральные вещества и их роль в организме. Физиологическая роль, суточная потребность, источник минеральных веществ.

7. Витамины и их роль в организме. Физиологическая роль, потребность организма и источник поступления витаминов. Водорастворимые витамины. Жирорастворимые витамины.

8. Роль обмена веществ в обеспечении энергетических потребностей организма. Коэффициент фосфорилирования. Калорический эквивалент кислорода.

9. Способы оценки энергетических затрат организма. Прямая калориметрия. Непрямая калориметрия.

10. Основной обмен. Уравнения для расчета величины основного обмена. Закон поверхности тела.

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

Липиды организма человека — это, главным образом, нейтральные сложные эфиры глицерина и высших жирных кислот — триглицериды, фосфолипиды и стерины. Высшие жирные кислоты, входящие в состав сложных липидных молекул в виде углеводородных радикалов, бывают насыщенными и ненасыщенными, содержащими одну и более двойных связей. Липиды играют в организме энергетическую и пластическую роль. По сравнению с молекулами углеводов и белков молекула липидов является более энергоемкой. Поэтому при окислении липидов в организме образуется больше молекул АТФ и тепла. За счет окисления жиров обеспечивается около 50 % потребности в энергии взрослого организма.

Запасы нейтральных жиров-триглицеридов в жировых депо человека в среднем составляют 10—20 % массы его тела. Из них около половины локализуется в подкожной жировой клетчатке. Кроме того, значительные запасы нейтрального жира откладываются в большом сальнике, околопочечной клетчатке, в области гениталий и между мышцами. Жиры, откладываясь в жировых депо, служат долгосрочным резервом питания организма.

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

Нарушения обмена липидов у детей приводит к различным расстройствам. Особенно актуально нарушение обмена жиров в жаркое время года, что грозит психическими расстройствами. Жиры являются источником образования эндогенной воды. При окислении 100 г нейтрального жира в организме образуется около 107 г воды. Если в удовлетворении энергетических потребностей организма основную роль играют нейтральные молекулы жира (триглицериды), то пластическая функция липидов в организме осуществляется, главным образом, за счет фосфолипидов, холестерина, жирных кислот. Эти липидные молекулы являются структурными компонентами клеточных мембран (липопротеинов) и предшественниками синтеза стероидных гормонов, желчных кислот и простагландинов.

Клеточные липиды

В состав клеточных липидов входят фосфолипиды и холестерин, являющиеся необходимыми структурными компонентами поверхностной и внутриклеточных мембран. Триглицериды откладываются в клетках в виде жировых капель, формируя жировые депо. Последние являются не инертной массой, а активной динамической тканью, в которой запасенные жиры подвергаются постоянному расщеплению и ресинтезу.

Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.

При действии на организм холода, в состоянии голода, при физической или психоэмоциональной нагрузке происходит интенсивное расщепление (липолиз) запасенных триглицеридов. Образующиеся при этом неэстерифицированные жирные кислоты используются в организме как энергодающие или как пластические вещества, необходимые для синтеза сложных липидных молекул. В условиях покоя после приема пищи происходят ресинтез и отложение нейтральных липидов в подкожной жировой клетчатке, брюшной полости, мышцах.

— Также рекомендуем «Бурый жир. Бурая жировая ткань. Липиды плазмы крови. Липопротеины. ЛПНП. ЛПВП. ЛПОНП.»

Источник

Окисление липидов в организме: роль и особенности процесса

Кислород является участником множества процессов в организме, необходимых для поддержания жизнедеятельности. Однако его активные формы могут причинять вред. Что такое окисление липидов в организме и в чем его особенности?

Энергетическая функция

Жировые клетки являются самыми энергоемкими, что отличает их от белков и углеводов. В процессе их окисления образуется энергия, которая запасается в виде АТФ. Основные функции липидов – пластическая и энергетическая. Они являются структурным элементом клеток, без которых организма бы не существовало. Липиды накапливаются в жировых депо, тем самым создавая источники энергообеспечения функций организма.

Перекисное окисление

Активные формы кислорода образуются в большинстве клеток организма, благодаря поэтапному присоединению электронов. Основной продукт таких реакций – это вода, но при этом превращении побочно выделяются и химически активные вещества. Процесс происходит не только в липидах, затрагиваются и молекулы белков.

Роль окисления

Участие активных форм кислорода чаще всего ведет к неприятным последствиям в организме – разрушению клеток. Особенно важен процесс окисления липидов мембраны, в ней формируются дефекты. Таким образом, клеточная мембрана перестает выполнять свои защитные функции, и клетка погибает.

Наиболее активным является гидроксильный радикал. Он оказывает более выраженное влияние на органические компоненты клеток. Он способен отнимать электрон у молекул, в результате чего запускается цепь реакций окисления. Для защиты в организме имеется система подавления окисления, которая помогает сохранить целостность в клетке.

Перекисное окисление причиняет не только вред. У этого процесса есть и полезные функции. Без активных форм невозможно представить фагоцитоз, в результате которого гибнут чужеродные для организма вещества. После захвата патогенного агента лейкоцитом его следует уничтожить, за что и отвечает кислород. Кроме того, процессы окисления помогают разрушать и удалять из организма поврежденные клетки, влияя на их мембраны и ДНК.

Окисление липидов и холестерин

Реакции

Перекисное окисление липидов протекает в организме всегда и затрагивает не только липиды, но и другие соединения. Этот процесс важен и для разрушения белков. Свободнорадикальное окисление вызывает повреждение некоторых аминокислот. Его активация приводит к изменению структуры, между ними появляются ковалентные связи – «сшивки», что способствует повышению функции протеолитических ферментов – это соединения, участвующие в разрушении поврежденных белков.

Липиды наиболее подвержены окислению, так как имеют специфическую структуру. Они имеют CH2-группу, через которую расположены двойные связи. От этой группы активные формы способны отнимать электрон.

Как окисляются липиды? Стадии включают запуск, развитие цепи и обрыв. Реакция перекисного окисления начинается с инициации. Ее запускает обычно гидроксильный радикал, который отнимает водород от группы CH2, содержащейся в молекуле полиеновой кислоты. Так образуется липидный радикал.

Далее, цепь развивается за счет присоединения кислорода, в результате чего формируется пероксид липида. При дальнейших превращениях образуются конечные продукты. Цепь может обрываться после образования связи с антиоксидантом. Таковы стадии процесса.

Особенности

Активные формы кислорода разрушительно влияют на структуры белков, генетического материала (ДНК), а также компонентов мембраны. В мембранах процесс повреждения запускается следующим образом. Клетки ограничены от окружающей среды двойным слоем липидов. Их молекулы содержат гидрофобную и гидрофильную части. Наружная часть представлена гидрофобными структурами, которые препятствую транспорту ряда веществ.

Читайте также:  Водка может снизить холестерин

В процессе окисления в этом слое образуются гидрофильные зоны – это связано с образованием гидропероксидов. Через эти участки спокойно проходит вода, а также ионы кальция и натрия, чего в норме происходить не должно. Они должны транспортироваться лишь при участии специальных систем. После окисления они активно проникают через зоны повреждения, в результате чего клетка набухает, ее органоиды повреждаются и она становится нежизнеспособной.

В норме такие процессы в организме поддерживают баланс, разрушая дефектные клетки. Однако некоторые заболевания сопровождаются избыточной активацией свободнорадикального окисления. Например, при болезни Паркинсона активируется разрушение нервных клеток, расположенных в стволе мозга. При мышечной дистрофии активируется окисление белков.

Реакция окисления активизируется и в зоне ишемии, а затем реваскуляризации (восстановлении сосудов). Это происходит, когда кровоток на время нарушается, а затем снова восстанавливается, например, при спазме или окклюзии просвета сосуда. Ситуацию можно подробно рассмотреть на примере тромбоза коронарной артерии.

В момент перекрытия сосуда тромбом кровь перестает снабжать миокард кислородом и питательными веществами – возникает ишемия.

Если своевременно была оказана помощь, и тромб удалось разрушить, кровоснабжение восстанавливается. Казалось бы, все процессы в клетке должны нормализоваться, но возникает синдром ишемии-реперфузии. Во время реоксигенации (восстановления снабжения кислородом) значительно повышено образование активных форм, из-за чего отмечаются дополнительные поражения клеток миокарда.

Биохимия выяснила, что перекисное окисление липидов протекает не только в организме. Его влияние можно оценить, обратив внимание на изменение свойств продуктов питания. Неверное хранение ведет к прогорканию жиров, потемнению масел, изменение запаха и вкуса молочных продуктов – все это происходит по причине окисления. Эта реакция приводит к изменению первоначальных свойств веществ.

Защита

Процессы окисления не должны быть излишне интенсивными, их активация может привести к пагубным последствиям. Избыточному выделению свободных радикалов препятствует особая защитная система – именно она поддерживает баланс в организме, препятствуя разрушению здоровых клеток. От какого соединения следует ждать защиты?

Важную роль играют ферменты, которые превращают активные формы кислорода в безобидные соединения. Среди таких ферментов можно выделить каталазу, супероксиддисмутазу и глутатионпероксидазу. Наибольшая активность этих ферментов наблюдается в печени и почках.

Окисление липидов и холестерин

Витамины

Витамин E относится к природным антиоксидантам. Это липофильная молекула, основная функция которой – подавлять свободные радикалы. Этот процесс проходит в гидрофобном слое клеточной мембраны. Альфа-токоферол более активен, чем бета. Механизм его действия заключается в отдаче атома водорода свободному радикалу, что останавливает пероксидное окисление липидов. Антиоксиданты вызывают снижение функции активных форм.

Витамин C также относится к группе антиоксидантов, поддерживая защиту клеток двумя механизмами. Это соединение способно восстанавливать витамин E, что усиливает свойства последнего. Кроме того, он способен самостоятельно инактивировать водорастворимые формы кислорода, за счет того, что является сильнейшим восстановителем.

Бета-каротин также способен блокировать перекисное окисление липидов. Такое соединение является предшественником витамина A. Активация перекисного окисления становится невозможной, благодаря действию этого соединения.

Таким образом, можно сделать вывод, что поступление необходимого количества витаминов в организм является профилактикой некоторых патологических изменений. Витамины должны преимущественно поступать с пищей – следует придерживаться рационального питания, употреблять в нужном количестве фрукты и овощи. Раз в 6 месяцев рекомендуется принимать курс поливитаминов. В пище должно быть сбалансированное содержание белков, углеводов и жиров.

Заключение

Перекисное окисление липидов имеет как положительные, так и отрицательные аспекты. Этот процесс необходим для организма, так как он защищает от действия чужеродных агентов, а также помогает уничтожать поврежденные клетки, которые уже не способны выполнять свои функции. Однако свободнорадикальное окисление может протекать слишком интенсивно – тогда поражаются здоровые клетки, нарушается их функция, и они погибают.

Многие заболевания связаны с активацией перекисного окисления. Защита от избыточного действия активных форм помогает сохранять баланс в организме. Чрезмерное снижение интенсивности окисления также нежелательно, так как нарушатся процессы фагоцитоза и удаления нежелательных клеток – важно поддерживать равновесие.

Источник

Обмен холестерина в организме человека: описание и нарушения метаболизма

Холестерин – это соединение, необходимое для нормального функционирования жирового обмена. Он принимает участие в выработке половых гормонов, образовании витамина D, регенерации тканей организма за счет синтеза клеточных стенок и мембран. Сегодня мы поговорим про обмен холестерина в организме человека – его роль, основные виды и этапы.

Поступление холестерина в организм

Экзогенный обмен: поступление холестерина с едой

Весь холестерин, циркулирующий в макроорганизме и принимающий участие в обмене веществ, является продуктом одного из двух синхронных механизмов его синтеза – экзогенного или эндогенного. В первом случае, экзогенном, холестерин поступает вместе с пищей. Он в большом количестве содержится в жирной, молочной и мясной еде. Метаболизм холестерина этого типа представлен на схеме:

Экзогенный обмен ХС

Читайте также: Что такое хиломикроны?

Метаболизм холестола

После попадания в просвет желудочно-кишечного тракта, начинается всасывание холестерина, желчных кислот и других свободных липидов. В кишечнике они проходят ряд трансформаций и под действием ферментов превращаются в хиломикроны. Оттуда, полученные микроскопические соединения транспортируются в печеночное русло через грудной лимфатический проток.

В случае, если эти хиломикроны попадут в кровеносное русло, то при соприкосновении с окружающими тканями, они отдадут прикрепленные на них жиры. Липопротеинлипаза, находящаяся на поверхности хиломикронов, обеспечивает нормальное всасывание данных липидов, расщепляя их на глицерол и жирные кислоты.

После этого процесса, хиломикроны уменьшаются. Формируются «пустые» ЛПВП (липопротеины высокой плотности), которые переносятся в печеночную систему.

Эндогенный обмен: выработка организмом

В условиях эндогенного синтеза, холестерол вырабатывается в печени и напрямую не зависит от приема пищи. На долю этого вида обмена приходится большая часть – почти 80% холестерина синтезируется в организме печенью. Цепочка превращений эндогенного обмена представлена на схематическом изображении:

Эндогенный обмен холестерина

Основная часть биохимии обмена холестерина в печени заключается в прикреплении его к белкам-переносчикам. Сам по себе, холестерин – неподвижное вещество. Для того чтобы его доставить в нужный отдел организма, он должен связаться со специфическими белками – липопротеидами различной плотности. Зависимо от их плотности эти молекулы и классифицируются:

  • ЛПОНП – липопротеиды очень низкой плотности
  • ЛПНП – липопротеиды низкой плотности
  • ЛПВП – липопротеиды высокой плотности
  • Хиломикроны – особая форма белков, отвечающая за перенос экзогенного холестерола из кишечника.

Читайте также: Что такое липопротеин (а)?

Свойства связанного холестерина определяются видом белка-переносчика, к которому он прикрепился.

На первом этапе эндогенного обмена, весь холестерол крепится к ЛПОНП. В таком виде он выходит в просвет сосудов, кровоснабжающие органы и разносится как субстрат в точки приложения – мышечную и жировую ткань, железы эндокринной секреции. После этого липопротеины отдавшие жиры, оседают на периферии, уменьшаются в размерах и становятся «липопротеидами промежуточной плотности».

Запускается формирование «пустых» ЛПВП, основная цель которых – собрать избыточное количество липидных молекул-комплексов с периферии. Попав обратно в печень, липопротеиды промежуточной плотности распадаются под действием ферментов и переходят в свою постоянную форму – ЛПНП.

Читайте также:  Норма холестерина триглицеридов лпнп

В таком виде циркулирует большая часть холестерола. В различных тканях есть ЛПНП-рецепторы, которые взаимодействуют с этим типом липопротеидов в крови. Основными потребителями холестерина являются:

  • Мышечная ткань. Холестерол – это мощные энергетические молекулы, они нужны для нормальной мышечной работы.
  • Эндокринные железы. На основе холестерина происходит синтез стероидных гормонов надпочечников и половых желез, он участвует в обмене и синтезе витамина D
  • Клетки – для синтеза мембран.

ЛПНП и ЛПВП синхронно циркулируют в кровотоке и регулируют деятельность друг друга. В норме, уровень в крови ЛПНП должен быть втрое выше, чем ЛПВП.

Нарушение метаболизма холестерина

Существует три основные причины нарушения холестеринового обмена:

  1. Повышенное поступление вредных липидов в организм с жирной, острой, копченой и соленой едой.
  2. Нарушение экскреции. Избыток липопротеидов выводится с желчью. При воспалительных процессах или желчно-каменной болезни гепато-биллиарной системы, этот отток может нарушаться.
  3. Нарушение в эндогенной цепочке превращений. В особенности – генетически детерминированные гиперхолестеринемии.

Читайте также: Какие продукты повышают холестерин в крови? [таблица по степени вредности]

Триггерными факторами, которые способны ускорить развитие нарушений липидного обмена, являются ненормированный образ жизни с гиподинамией, вредные привычки, ожирение, бесконтрольное применение медикаментов. Дисбаланс в обмене липидов может привести к гемолизу эритроцитов, нестабильности мембран гепатоцитов и их цитолизу, токсическому поражению нервной системы, дисбалансу эндокринного обмена.

Высокий холестерин опасен развитием деструктивного сосудистого заболевания – атеросклероза. Последствия этой патологии могут не только снизить качество жизни, но и привести к летальному исходу. Важно следить за своим здоровьем, вовремя проходить медицинские обследования, придерживаться активного жизненного стиля и правильно питаться.

Источник

Перекисное окисление липидов и активность липопротеин-ассоциированной фосфолипазы А2 в сыворотке крови у больных неалкогольной жировой болезнью печени

Комментарии

Опубликовано в журнале:

« Поликлиника » 4/2015 Л.А. Звенигородская, Т.В. Нилова, А.В. Петраков, МКНЦ (ЦНИИГ), Москва

В настоящее время неалкогольная жировая болезнь печени (НАЖБП) считается одним из основных факторов риска сердечно-сосудистых заболеваний. Печень играет важную роль в развитии атерогенной дислипидемии. [4,7] При прогрессировании ожирения увеличивается поступление в печень свободных жирных кислот [9,13] , в результате происходит усиление процессов перекисного окисления липидов. [2,15,17,]
Воздействие токсических форм кислорода на ненасыщенные жирные кислоты (фосфолипидов, триглицеридов, эфиров холестерина) ведет к разрушению этих кислот и появлению токсичных альдегидов как малоновый диальдегид (МДА). Накопление перекисей липидов в тканях сопровождается разрушением молекулярной структуры мембран. Фосфолипиды являются важнейшими компонентами клеточных мембран и представлены в основном фосфатидилхолинами. Фосфолипидный состав определяет жидкокристаллические свойства и проницаемость мембраны. [16] Мембраны обеспечивают нормальную работу белков транспортеров, ферментов, катализирующих процессы окисления, клеточного дыхания, окислительного фосфорилирования. При НАЖБП наблюдается снижение содержания фосфатидилхолина в гепатоцитах. [14 ] Фосфатидилхолин синтезируется в гепатоцитах при достаточном уровне холина. Интенсификация процессов перекисного окисления липидов (ПОЛ) зависит от степени повреждения мембран гепатоцитов. Накопление ПОЛ в гепатоцитах играет большую роль в нарушении их ультраструктуры. Перекисный и фосфолипазный механизмы повреждения липидов тесно связаны. ФЛА2 связана в плазме с атерогенными частицами ЛПНП, является высоко специфичным маркером васкулярного воспаления. [6] Повышенный уровень ФЛА2 в сыворотке крови указывает на наличие бляшки, склонной к разрыву и является независимым фактором риска сердечно-сосудистых заболеваний, в том числе коронарного атеросклероза, инфаркта миокарда и инсульта. [12,18]

Ключевые слова: неалкогольная жировая болезнь печени, малоновый диальдегид фосфолипаза А2,оксид азота, эндотоксин.

Цель настоящего исследования – определить уровень малонового диальдегида (МДА) у больных НАЖБП в сыворотке крови и его связь с повреждением мембран гепатоцитов в зависимости от морфологической картины заболевания. Выявить взаимосвязь перекисного и фосфолипазного механизма повреждения мембран гепатоцитов с другими маркерами воспаления эндотоксином и оксидом азота.

Материалы и методы исследования

Обследовано 80 больных НАЖБП (59 женщин и 21 мужчина). Средний возраст 53,5±9,5 лет. Индекс массы тела (ИМТ) более 30 кг/м2. Диагноз был верифицирован клиническими, биохимическими, инструментальными и морфологическими методами исследования. Основные морфологические изменения обследованных больных характеризовались крупнокапельной жировой дистрофией гепатоцитов. [См. рис. 4, 5, 6 (Морфология)] При анализе биохимических показателей в 40% случаев отмечено повышение аминотрансфераз и ГГТП в 2–3 раза. Показатели липидного спектра обследуемых больных характеризовались повышением общего холестерина, ХС ЛПНП, ТГ и снижением ХС ЛПВП.

Содержание ФЛА2 определяли иммуноферментным методом с помощью диагностических наборов PLAC TEST Elisa Kit(CША). Метод позволяет провести измерение белка секретируемой ФЛА2 при использовании высокоспецифичных моноклональных антител. ПОЛ определяли по содержанию МДА с тиобарбитуровой кислотой. [1] Для определения эндотоксина применяли хромогенный метод по конечной точке с использованием ЛАЛ теста (Limulus amebocyte lysate, США). Уровень метаболитов оксида азота определяли скрининг-методом в биологических жидкостях как маркер дисфункции эндотелия с хлоридом ванадия (Германия). [11] Статистическую обработку данных провели с использованием программ «Биостат» и Статистика.

Введение

Свободнорадикальные реакции ПОЛ протекают во всех клетках и тканях живых организмов, в основном в биомембранах, и представляют собой каскад окислительных реакций деградации ненасыщенных жирных кислот, входящих в состав фосфолипидов. В клетках здорового организма уровень ПОЛ является жизненно важным звеном в регуляции проницаемости и транспорта веществ через мембраны, в синтезе простагландинов, метаболизме стероидных гормонов и других клеточных механизмах. [3]

Окислительные реакции с участием свободных радикалов рассматриваются в настоящее время как необходимый процесс в регуляции клеточного метаболизма. Особо важное значение ПОЛ для организма заключается в обновлении мембран клеток. При нарушении структуры и функции клеточной мембраны изменяется концентрация ионов по обе стороны мембраны, повреждаются функции сигнальных и транспортных систем. Это приводит к развитию инсулинорезистентности.

Полиненасыщенные жирные кислоты (ПНЖК) являются субстратами для синтеза простагландинов. Избыток кальция активирует фосфолипазу А2, что отражается на структуре фосфолипидов, в митохондриях уменьшается содержание фосфатидилхолина и фосфатидилэтаноламина. При активации фосфолипаз из фосфолипидов высвобождаются ПНЖК и легко окисляются.

Окисление ПНЖК с образованием эндоперекисей может происходить в процессе ПОЛ, которое необходимо для синтеза лейкотриенов, регуляции липидного состава мембран, метаболизма катехоламинов и фагоцитоза. Стационарный уровень протекания ПОЛ регулируется антиоксидантной системой, которая ограничивает образование липидных радикалов.

Супероксиддисмутаза, каталаза и глутатионзависимые ферменты сохраняют клетки от окислительного стресса. Активность ферментов антиоксидантной защиты снижалась при воспалении, а активация фосфолипазы увеличивалась. [5] Ингибировать глутатионзависимые ферменты могут продукты фосфолипазного гидролиза – свободные жирные кислоты. Важную роль в антиоксидантной защите организма играют пептиды, в состав которых входят SH-содержащие аминокислоты: цистеин, цистин и метионин. Особое место занимает глутатион, образованный аминокислотами цистеином, глицином и глутаминовой кислотой. SH-содержащие соединения защищают клетки от повреждающего действия свободных радикалов. Дефицит холина и метионина способствует угнетению фермента cтеаторил-коэнзим А-десатураза-1 (SСД-1), которая катализирует десатурацию пальмитиновой и стеариновой кислот, регулирует запасы ТГ в клетке и проявляет защитное действие на клетки печени. Низкая активность SСД-1 усугубляет тяжесть течения стеатогепатита. [19]

В качестве основных механизмов перехода от стеатоза к стеатогепатиту рассматривают ускоренный липолиз, аккумуляцию липидов в гепатоцитах, оксидативный стресс с формированием избытка свободных радикалов, повреждение ДНК и некроз гепатоцитов.

Читайте также:  Дозировка аторвастатина при повышенном холестерине

При стеатогепатите морфологические изменения характеризуются формированием гигантских митохондрий, что ведет к апоптозу клеток. Воспалительная реакция представлена внутридольковыми инфильтратами на фоне жировой дистрофии гепатоцитов. Также наблюдаются жировые кисты, «пустые» ядра гепатоцитов, липогранулемы. [2]

Воспалительная реакция начинается с эндотелия. При воспалении, гипоксии, эндотоксиновой агрессии происходит нарушение функции эндотелия. Макрофаги под действием эндотоксина выделяют оксид азота, который легко проникает в клетки и взаимодействует с ферментами и белками. Оксид азота ингибирует калий-натрий-АТФ-азу, тем самым снижается чувствительность к инсулину, ингибируются митохондриальные ферменты, цитохром-Р-450, который метаболизирует жирные кислоты и холестерин, происходит накопление СЖК в клетках печени. В условиях гипергликемии усиливаются процессы ПОЛ, что может индуцировать апоптоз, за счет активации ядерного фактора транскрипции, повышающего экспрессию индуцибельной синтазы оксида азота. [8,20]

Влияние ЛПС и других медиаторов воспаления на функцию печени вызывает экспрессию синтеза фосфолипазы А2 и усиление жировой инфильтрации печени. Усиление гепатоцитами и клетками эндотелия синтеза ФЛА2 формирует воспалительный процесс.

Липопротеин-ассоциированная фосфолипаза А2 (ФЛА2) гидролизует фосфолипиды в ЛПВП и ЛПНП в кровотоке. В результате гидролиза образуется лизо-фосфатидилхолин (лизо-ФХ) – активный провоспа-лительный липид, который стимулирует образование активных форм кислорода нейтрофилами, клетками эндотелия и макрофагами в интиме артерий. Лизо-ФХ также изменяет активность синтазы оксида азота и количество синтезируемого NO.

Лизо-ФХ играет ключевую роль в атерогенезе, являясь цитотоксичным к клеткам сосудов, резко изменяет текучесть мембран, способствует высвобождению медиаторов воспаления, также изменяет активность синтазы оксида азота и количество синтезируемого NO.

Происходит нарушение эндотелий зависимой ва-зодилатации за счет снижения биодоступности оксида азота для гладкомышечных клеток артериол. [14] Липо-литический фермент ФЛА2 проявляет свою активность в клетках печени. Особое значение имеет фосфолипаз-ная активность митохондрий, которая играет ведущую роль в развитии некротических изменений в клетке.

Результаты исследования и их обсуждение

Верхней границей физиологического уровня принято считать 200 нг/мл. У больных НАЖБП в стадии стеатогепатита (НАСГ) содержание ФЛА2 у 33 больных (40%) было повышено в 3,8 раза (медиана 199,7–528,2 нг/мл) и составило 493,6±81,93 нг/мл. У 22 больных из них высокий риск сердечно-сосудистых осложнений (медиана 324,3–764,4), в среднем 488,9±25,86 нг/мл. ФЛА, мг/мл

Рис. 1а. Содержание ФЛА у больных НАЖБП

Рис. 1б. Корреляционное соотношение ФЛА2 с ЛПНП

При попадании в кровоток ФЛА2 связывается и транспортируется с ЛПНП, отмечена тесная корреляционная связь ФЛА2 с ЛПНП (r=0,957). Р2 у 47 больных (60%) в среднем 129,7±6,22 нг/ мл. Активность фермента в плазме и тканях регулируется индукцией цитокинов и бактериальных токсинов и коррелирует со степенью развития патологических процессов при различных заболеваниях.

У 65 больных НАЖБП в стадии НАСГ было определено в сыворотке крови содержание МДА и ФЛА2. Содержание МДА у этих больных было увеличено в 2 раза и составило в среднем 18,81 ±1,24 мкмоль/л, в контроле 9,94±1,62 мкмоль/л. МДА мкмоль/л

Рис. 2а. Перекисное окисление липидов (ПОЛ).
Содержание малонового диальдегида (МДА) у больных НАЖБП

Рис. 2б. Корреляция ФЛА2-МДА

Отмечен высокий уровень ФЛА2 (640 нг/мл) и МДА (15,98 мкмоль/л) у 26 больных НАСГ и низкий уровень ФЛА2 при нормальном содержании МДА у остальных больных НАЖБП. и МДА находятся в отрицательной корреляционной зависимости, коэффициент корреляции –0,578.

Рис. 3а. Содержание ФЛА2 в сыворотке крови у больных НАЖБП

Рис. 3б. Содержание МДА в сыворотке крови у больных НАЖБП

Рис. 3в. Корреляционное соотношение между ФЛА2 и МДА

При чрезмерном накоплении липидов в гепатоцитах усиливаются процессы ПОЛ, что ведет к некрозу гепатоцитов, нарушению функций митохондрий, постепенному развитию фиброза печени и формированию стеатогепатита.

Сравнительный анализ содержания стабильных метаболитов оксида азота в сыворотке крови больных и контрольной группы показал, что воспалительный процесс в группе стеатогепатита достоверно сопровождался повышенной продукцией оксида азота. Уровень метаболитов возрастал параллельно концентрации аминотрансфераз. Отмечена корреляционная зависимость оксида азота и аланиновой трансаминазой (АЛТ) r=0,86 Р=0,001). Уровень ФЛА2 возрастал при воспалении у больных НАСГ и коррелировал с уровнем оксида азота (r=0,62 Р=0,001).

Рис. 4. Морфология. Жировая инфильтрация гепатоцитов при стеатозе печени

Рис. 5. Морфология. Смешанноклеточный внутридольковый инфильтрат при стеатогепатите

Рис. 6. Морфология. Фагоцитарные гранулемы и перигепатоцеллюлярный фиброз при стеатогепатите

У больных с висцеральным ожирением и инсулинорезистентностью усиление оксидативного стресса приводит к инактивации NO за счет накопления реактивных кислородных радикалов. Нарушается равновесие в системе NO в сторону увеличения концентрации сосудосуживающих факторов и снижении биодоступности NO. Повреждение эндотелия сосудов усугубляется воздействием окисленных форм ЛПНП.

Обильный рост патогенной микрофлоры вызывает формирование бактериального воспаления в слизистой оболочке тонкой кишки, что вызывает активацию процессов ПОЛ.

Содержание эндотоксина в сыворотке крови было повышено у больных НАСГ по сравнению с контролем и больными стеатозом печени. При попадании ЛПС в системный кровоток он связывается с белком и запускает каскад иммунных реакций. Эндотоксемия определяется как циркуляция в крови бактериальных эндотоксинов в концентрации выше 2,5 ЕЭ. [10]

Отмечена корреляционная связь между содержанием эндотоксина и оксида азота (r=0,62, Р=0,001). Повышение эндотоксина и оксида азота выявлено при прогрессировании воспалительной инфильтрации в печени, что доказывает участие маркеров воспаления в патогенезе НАЖБП.

При НАЖБП маркеры воспаления были повышены при воспалительной стадии перехода стеатоза к стеатогепатиту параллельно повышению печеночных ферментов и морфологической картине воспалительной инфильтрации в печени.

НАЖБП часто ассоциируется с метаболическими нарушениями: повышенной массой тела, дислипидемией, сердечно-сосудистыми заболеваниями, сахарным диабетом типа 2.

В настоящее время для лечения больных НАЖБП используют препараты, сочетающие в себе антиоксидантную защиту, стабилизацию мембран гепатоцитов, противовоспалительную терапию. Получены убедительные данные о влиянии препарата Дибикор на углеводный и жировой обмен при НАЖБП. Дибикор – лекарственный препарат (ПИК-ФАРМА, Россия), действующим веществом которого является таурин. Дефицит таурина в печени приводит к нарушению желчевыделения и образования камней.

Желчные кислоты препятствуют развитию ожирения и тканевой резистентности к инсулину. Повышение растворимости гидрофильности желчных кислот достигается конъюгированием с аминокислотами глицином и таурином. Соединяясь с холевой кислотой, таурин образует парные желчные кислоты и непосредственно участвует во всасывании жиров и жирорастворимых витаминов, а также способствует выведению холестерина.

Дибикор может быть использован для коррекции и профилактики метаболических нарушений в терапии НАЖБП. Клиническая эффективность препарата Дибикор была оценена у больных с НАЖБП и СД типа 2, нарушением толерантности к глюкозе. Двойное слепое плацебо-контролируемое сравнительное исследование проводилось на базе ЦНИИГ.

Дибикор назначался по 0,5 г 2 раза в день за 20 минут до еды в течение 3 месяцев. Все больные продолжали получать подобранную терапию по поводу сахарного диабета – метформина гидрохлорид 1000мгсут и эналаприла малеат 20 мг сут. Прием Дибикора статистически значимо улучшал показатели билирубина, АСТ, АЛТ, ХС, фибриногена, веса, ИМТ. АЛТ снижалась с 51,48±8,9 Ел до 32,98±5,93 (Р=0,001), АСТ с 39,13±6,53 Ел до 26,81±2,99 (Р=0,01), ГГТП с 68,86±17,56Ел до 63,45±18,4. Снижались также мета?