Оксид углерода и гемоглобин
Содержание статьи
травление угарным газом. Карбоксигемоглобинемия
Отравление угарным газом. КарбоксигемоглобинемияКлассическим примером повреждающего действия на кровь с нарушением ее дыхательной функции, обусловленным инактивацией кровяного пигмента — гемоглобина, служит образование карбоксигемоглобина (НbСО) под влиянием оксида углерода. Превращение гемоглобина в НbСО приводит к изменению спектральных характеристик крови, что легло в основу количественного определения его в крови. НbСО образуется в результате взаимодействия оксида углерода (СО) с железом гемоглобина, что лишает его способности к оксигенации, приводит к нарушению транспортной функции и как результат вызывает развитие гемической гипоксии. Появление НbСО служит следствием поступления СО в легкие с вдыхаемым воздухом. Образование НbСО начинается с периферии эритроцитов уже в легочных капиллярах. В дальнейшем с увеличением содержания СО во вдыхаемом воздухе НbСО образуется не только в периферических отделах эритроцита, но и в центральных его отделах. Причем скорость образования НbСО прямо пропорциональна величине концентрации СО во вдыхаемом воздухе, а максимум его в крови определяется временем контакта. Способность гемоглобина связывать 02 и СО одинакова при условии, что 1 г гемоглобина может связывать 1,33—1,34 мл 02. Эта зависимость носит название константы Хюфнера. Вместе с тем сродство гемоглобина к СО в 250—300 раз больше, чем к 02. Примечательно, что оболочка эритроцитов служит своего рода защитным барьером при образовании НbСО, так как во взвеси эритроцитов этого деривата гемоглобина образуется на 20 % меньше, чем в растворе гемоглобина. Валентность железа в НbСО остается неизмененной, происходит лишь перестройка связей Fe2+. Все непарные электроны участвуют в образовании НbСО. Параллельно с образованием связей между СО и Fe2+ изменяется характер связи железа с глобином и порфирином. Она теряет свой ионный характер и превращается в ковалентную. Взаимодействие СО с Нb02 выражается взаимно сопряженными реакциями. нbо2 + со -> нbсо + о2 Скорость этих реакций и образование НЬСО определяются парциальным давлением СО и О2 в воздухе. При этом количество образовавшегося НbCO мо пропорционально давлению СО в окружающей среде и обратно пропорционально давлению 02. Несмотря на высокое, как указывалось выше, сродство СО к гемоглобину, ассоциация его с гемоглобином происходит в 10 раз медленнее, чем таковая с 02. Однако при этом диссоциация HbСО протекает в 3600 раз медленнее, чем диссоциация Нb02. По этой причине HbCO очень быстро накапливается в крови даже при сравнительно небольшом содержании СО во вдыхаемом воздухе. Таким образом, помимо выключения части гемоглобина из транспорта кислорода, еще одним патогенетически важным звеном в нарушении дыхательной функции крови на фоне карбоксигемоглобинемии служит замедление диссоциации оксигемоглобина под влиянием НЬСО, что известно под названием эффекта Холдена. Так в физиологических условиях повышение концентрации С02 в крови способствует ускоренному отщеплению 02 от НЬ02, при наличии НЬСО этот сбалансированный процесс нарушается. Принято считать, что суть эффекта Холдена заключается в том, что при взаимодействии СО с гемоглобином поступивший в кровь СО соединяется только с 3 из 4 атомов железа в молекуле гемоглобина, тогда как с 4-м атомом железа соединяется 02, сродство которого к этому атому железа резко возрастает, что, естественно, затрудняет диссоциацию оксигемоглобина. Еще одним причинным фактором угнетения диссоциации Нb02 под влиянием СО служит снижение уровня промежуточного метаболита 2,3-дифосфоглицерата, который образуется в процессе реакции гликолиза. 2,3-Дифосфоглицерат обладает способностью усиливать процесс диссоциации НbСО за счет вызываемых им конформационных изменений гемоглобина, поэтому естественно, что дефицит этого метаболита косвенно тормозит высвобождение 02 из Нb02. Итак, основным пусковым механизмом развития специфической гемической гипоксии при отравлении СО является образование НbСО, который утрачивает способность переносить кислород в сочетании с угнетающим влиянием на процесс диссоциации Нb02. Неопровержимое доказательство того, что первопричиной развития СО-интоксикации является карбоксиге-моглобинемия, — прямая зависимость между уровнем НbСО в крови и тяжестью интоксикации. Так, по данным V.E.Henderson, при содержании НbСО в крови, равном 10 %, отмечена лишь одышка при физическом напряжении, при 40—50 % НbСО появляются явные признаки интоксикации: головная боль, помрачение сознания вплоть до его потери, концентрация НbСО в крови свыше 60 % ведет к летальному исходу. Во всяком случае у людей, впадающих в коматозное состояние или погибающих от острого отравления СО, содержание НbСО, как правило, не менее 50 %. Однако не всегда прослеживается прямая связь между содержанием в крови НbСО и тяжестью отравления. Известны случаи, когда тяжелая форма отравления развивалась уже при 20 % НbСО и, наоборот, при 60 % НbСО встречаются легкие формы отравления. Во многом это объясняется достаточно большой индивидуальной чувствительностью к СО, которую связывают с генетическим фактором. — Также рекомендуем «Диагностика карбоксигемоглобинемии. Изменения красной крови при карбоксигемоглобинемии» Оглавление темы «Алкилирующие яды. Отравление угарным газом»: |
Источник
иохимия крови при отравлении угарным газом. Хроническая интоксикация угарным газом
Биохимия крови при отравлении угарным газом. Хроническая интоксикация угарным газомСущественно важными при интоксикации СО представляются некоторые сдвиги биохимического характера: увеличение негемоглобинового железа крови (может достигать 50 %), что имеет непосредственное отношение к состоянию красной крови. При повторных острых отравлениях параллельно происходит падение содержания железа в тканях за счет соединения с СО, что расценивается как механизм детоксикации. Достаточно хорошо изучены и некоторые другие биохимические сдвиги в периферической крови при остром отравлении СО. Так, со стороны углеводного обмена выявлены нарушения в виде гипергликемии и глюкозурии. По мнению одних авторов, эти сдвиги могут быть следствием изменений центральных механизмов регуляции углеводного обмена, по мнению других, причина — в усиленном распаде гликогена печени за счет интенсивного выделения адреналина. Достаточно закономерным при этом считают увеличение содержания молочной кислоты в крови при повышении уровня НbСО до 30 %. Нарушения азотистого обмена при острой интоксикации СО сводится в основном к усиленному накоплению азотистых шлаков в крови, а именно мочевины, обусловлено нарушениями антитоксической функции печени. Со стороны липидного обмена прослежены стимуляция окисления свободных жирных кислот и снижение продукции триглицеридов. Электролитный обмен проявляется дисбалансом содержания в крови и тканях кальция, магния и особенно калия и натрия. Последнее приводит к нарушению деятельности сердечной мышцы. По аналогии с приведенными выше данными об остром отравлении СО повторные многократные воздействия последнего на животных разных видов в концентрациях 200—1000 мг/м3 приводят к увеличению уровня HbCO в крови до 20—30 %. Естественно, что это влечет за собой развитие кислородной недостаточности и компенсаторное стимулирование эритропоэза с увеличением числа ретикулоцитов и гемоглобина. При снижении действующей концентрации СО до 50—100 мг/м3 содержание НbСО не превышает 10 % при условии, что небольшое количество СО находится в плазме, будучи связаннным с негемоглобиновым железом. По аналогии с острым отравлением в эксперименте на животных при воздействии концентраций СО в пределах 100—80—40—30 мг/м3 наблюдаются нарушения порфиринового обмена и обмена железа. При этом уровень общего железа и негемоглобинового железа сыворотки возрастает. С течением времени по мере развития интоксикации содержание железа в крови уменьшается, что соответствует первоначальному повышению количества эритроцитов крови с последующим их падением. С этим согласуются данные об увеличении уровня гемоглобина и значения гематокрита при 30-суточном воздействии СО в концентрации 120 мг/м3 при ежедневной 8-часовой экспозиции. По результатам исследований В.А.Тетерина и А.И.Эйтингона, наиболее закономерными сдвигами в условиях хронического воздействия СО в концентрации 22 мг/м3 у крыс было увеличение в плазме уровня негемоглобинового железа, дельтааминолевулиновой кислоты и содержания копропорфирина на фоне усиленного потребления кислорода. В моче при этом повышается содержание дельтааминолевулиновой кислоты, копро- и уропорфирина. Это подтверждает закономерность нарушений порфиринового обмена при любых режимах воздействия СО на организм. В поздних стадиях интоксикации, а иногда уже на начальных ее этапах, возможно развитие анемии. Примечательно, что в условиях хронического воздействия СО на людей при содержании НbСО в крови в среднем 4 % в эритроцитах возрастало содержание дельтааминолевулиновой кислоты до 2,7—6,9 мкг/мл в сравнении с исходным (0,7—2,5 мкг/мл). В последующем это сопровождалось нарушением синтеза порфиринов и гема. В целом нельзя исключить и прямое воздействие СО на биосинтез гема в клетке. В известной мере по содержанию дельтааминолевулиновой кислоты в эритроцитах можно судить о чувствительности организма к СО. Изменения со стороны белой крови характеризуются разнонаправленностью, в частности может иметь место как лейкоцитоз, так и лейкопения на фоне эозинопении, лимфоцитоза, моноцитоза. Описана также токсическая зернистость нейтрофилов. При хроническом воздействии СО в нейтрофилах обнаружено увеличение ДНК и снижение РНК при условии падения в них активности пероксидазы. При изучении воздействия СО на человека в концентрациях порядка 10—20 мг/м3 в условиях термокамеры на протяжении 1—3 мес обнаружены следующие закономерные изменения: сдвиг кислотно-щелочного равновесия в сторону ацидоза, появление в крови НbСО в пределах 10,5—14 %, рост негемоглобинового желе3а сыворотки до 149 мкг% при 127 мкг% в исходном состоянии (в случае концентрации СО порядка 20 мг/м3) и снижение индекса каталазы. Как уже указывалось выше, между содержанием НbСО в крови и выраженностью клинических симптомов не всегда прослеживается прямая зависимость. Однако особенно часто этот феномен имеет место при анализе случаев хронического отравления. Это значительно затрудняет его диагностику. Объяснение таким фактам, когда при прогрессирующем снижении уровня НbСО в крови вплоть до нормальных величин симптомы отравления сохраняются, заключается в том, что поступивший в организм СО фиксируется гемоглобином в виде НbСО и выводится из организма после его разрушения. Исследованиями ряда авторов доказано, что СО способен фиксироваться в клетках ряда органов, в частности печени, селезенки, мышц, головного мозга. Это сочетается с возрастанием при хроническом отравлении СО содержания негемоглобинового железа плазмы, в результате чего СО длительное время находится вне связи с гемоглобином. Ростом негемоглобиного железа сыворотки можно объяснить и увеличение содержания глобулиновой фракции белков сыворотки, которая содержит в своем составе транспортную форму железа — трансферрин. Такое предположение прямо подтверждается серией соответствующих работ, в которых показано, что при хронической интоксикации СО рост содержания железа в сыворотке и протопорфиринурия сочетаются с нарастанием В-глобулино-вой фракции белков сыворотки. Хорошо известно, что клиника как острых, так и хронических отравлений СО изобилует симптомами поражения в первую очередь ЦНС, а также других органов и систем, что объясняется в первую очередь результатом развивающейся гемической гипоксемии и гипоксии, а также в известной мере блокадой ферментных систем, содержащих железопорфириновые структуры. Для хронического воздействия характерны расстройства ЦНС: астенический синдром, вегетативная дистония и ангиодистонический синдром с наклонностью к ангиоспазмам, а также изменения психической сферы. Доказано, что хроническая интоксикация СО сопровождается, нарушением функции сердечно-сосудистой системы при условии разной степени поражения сердечной мышцы за счет гипоксии. Возможны изменения артериального давления как в сторону гипо-, так и особенно гипертонии. Несколько менее закономерно, но тем не менее возможно возникновение отклонений со стороны эндокринной системы, в том числе половой сфере, а также показателей функций щитовидной железы и надпочечников. И, наконец, существуют данные о нарушениях органов чувств под влиянием хронической СО-интоксикации. Это касается органа слуха (кохлеарной и вестибулярной части внутреннего уха), а также органа зрения с нарушениями конвергенции, аккомодации, цветоощущения, остроты зрения, сужением полей зрения и, наконец, изменениями глазного дна в виде сосудистой патологии сетчатки различной интенсивности. — Также рекомендуем «Отравление метгемоглобинообразователями. Метгемоглобинемия» Оглавление темы «Алкилирующие яды. Отравление угарным газом»: |
Источник
Связывание гемоглобина с оксидом углерода
Оксид углерода (угарный газ, СО) обладает гораздо большим сродством к гемоглобину, чем кислород. Даже при крайне низких парциальных давлениях СО гемоглобин превращается в карбоксигемоглобин: Нb+СО Þ НbСО. Равновесие этой реакции значительно смещено вправо, поэтому кривая диссоциации карбоксигемоглобина имеет очень крутой наклон. Высокое сродство оксида углерода к гемоглобину обусловлено тем, что СО диссоциирует от НЬ гораздо медленнее, чем О2. Максимально эффективная концентрация для СО составляет 30 частей на миллион, что соответствует 0,003 объемных %. В артериальной крови человека, пребывающего достаточно долго в среде с таким содержанием СО, на долю НЬСО приходится около 5% общего содержания гемоглобина. Парциальные давления СО и О2, при которых содержание соответственно НbСО и НbО2 составляет по 5%, соотносятся как 1:350. Иными словами, в данных пределах парциальных давлений сродство Нb к СО примерно в 35O раз выше, чем к О2.
Токсичность оксида углерода обусловлена именно высоким сродством этого соединения к гемоглобину. СО представляет собой газ без цвета и запаха, образующийся при неполном сгорании органических веществ. Иногда он входит в состав бытового газа; кроме того, он выделяется при работе двигателей внутреннего сгорания. Даже при низких концентрациях СО вытесняет кислород из соединения с гемоглобином, при этом последний теряет способность к переносу О2. В норме на долю НbСО приходится лишь 1% общего количества гемоглобина в крови; у курильщиков же к вечеру она достигает 20%. Об опасности, которую угарный газ представляет для автомобилистов, говорит тот факт, что на дорогах с особенно интенсивным движением содержание СО в воздухе достигает 3-10 ч. При такой концентрации СО шахтерам положено надевать дыхательные аппараты.
Токсичность угарного газа обусловлена не только блокированием гемоглобина, но и другим эффектом. Когда часть гемоглобина превращается в НbСО, кривая диссоциации оксигемоглобина (для гемоглобина, еще не блокированного СО) сдвигается влево и может в итоге приобретать форму гиперболы. В результате происходит еще большее снижение напряжения О2 в тканевых капиллярах.
При тяжелом отравлении угарным газом, отличительным признаком которого служит вишнево-красная окраска крови, жизнь пострадавшего можно спасти путем немедленного применения искусственного дыхания, по возможности с чистым кислородом. При этом напряжение кислорода в крови увеличивается, и О2 частично вытесняет СО из связи с гемоглобином. Рекомендуется также переливание большого количества крови, так как при этом в кровь пострадавшего поступает гемоглобин, способный переносить кислород.
Перенос СО2 кровью. Формы транспорта СО2.
Диоксид углерода (СО2, углекислый газ) ― конечный продукт окислительного метаболизма в клетках ― переносится с кровью к легким и удаляется через них во внешнюю среду. Подобно кислороду, диоксид углерода может переноситься как в физически растворенном виде, так и в составе химических соединений. Химическое связывание СО2 ―более сложный процесс по сравнению со связыванием кислорода. Это обусловлено тем, что механизм, отвечающий за транспорт СО2, должен одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.
Связывание СО2. Напряжение СО2 в артериальной крови, поступающей в тканевые капилляры, составляет 40 мм рт.ст. (5,3 кПа). В клетках же, расположенных около этих капилляров, напряжение СО2 значительно выше, так как углекислый газ постоянно образуется в процессе метаболизма. В связи с этим физически растворенный СО2 диффундирует по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в растворенном состоянии, но большая часть СО2 претерпевает ряд химических превращений. Прежде всего, происходит гидратация молекул СО2 с образованием угольной кислоты, сразу же диссоциирующей на ион бикарбоната и протон:
В плазме крови эта реакция протекает очень медленно; в эритроците же она ускорена примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в эритроцитах, практически все молекулы СО2, участвующие в реакции гидратации, должны сначала проникнуть в эритроциты.
Роль разных форм СО2 в газообмене. В крови, поступающей к тканям, напряжение СО2 составляет 40 мм рт.ст. Проходя через них, кровь насыщается углекислым газом, и напряжение его в оттекающей из тканей крови достигает в среднем 46 мм рт.ст. При этом 1 л крови поглощает примерно 1,8 ммоль СО2. Около 12% этого количества остается в физически растворенном виде или в форме недиссоциированной угольной кислоты, 11% образует карбаминовое соединение с гемоглобином, 27% транспортируется в виде бикарбоната в эритроцитах, а остальное количество ― около 50% ― растворено в виде НСО3¯ в плазме. При прохождении крови через легкие СО2 высвобождается из этих четырех форм в таком же соотношении.
Сатурационные кривые СО2
Зависимость содержания СО2 от его напряжения. Общее содержание диоксида углерода в крови складывается из концентраций физически растворенного и форм химически связанного СО2 ― угольной кислоты, карбамата и бикарбоната. Большая часть СО2 присутствует внутри и вне эритроцитов в форме бикарбоната. При повышении РСО2 содержание всех этих форм СО2 увеличивается.
Связь между концентрацией в крови и парциальным давлением СО2 описывается сатурационной кривой, сходной с кривой диссоциации оксигемоглобина. Зависимость связывания СО2 от степени оксигенации гемоглобина называют эффектом Христиансена-Дугласа-Холдена «или кратко эффектом Холдена.
Существует принципиальная разница между сатурационными кривыми связывания СО2 и кривыми диссоциации оксигемоглобина. Кривые диссоциации НbО2 асимптотически приближаются к максимуму, а связывание СО2 не достигает насыщения. По мере увеличения парциального давления СО2 количество связанного СО2 постоянно возрастает, так как образование бикарбоната в крови практически не лимитировано.
Физиологическое значение эффекта Христиансена-Дугласа-Холдена. При рассмотрении процессов поступления СО2 в кровь из тканей и его высвобождения в легких следует помнить о том, что эти процессы происходят одновременно с обменом О2. Изменения в насыщении гемоглобина кислородом влияют на связывание СО2 кровью и тем самым на его обмен.
К тканевым капиллярам обычно притекает полностью оксигенированная кровь. По мере того как кровь проходит через капилляры и кислород выходит из нее в ткани, способность крови поглощать СО2 увеличивается. Таким образом, эффект Христиансена-Дугласа-Холдена способствует поглощению СО2 кровью в тканях. В легких происходят обратные процессы. В результате того, что в кровь поступает кислород, ее сродство к углекислому газу снижается, и тем самым облегчается диффузия СО2 в альвеолы. Итак, мы убедились в том, что как при поступлении СО2 в кровь из тканей, так и при выделении его в легких эффект Христиансена-Дугласа-Холдена способствует диффузионному обмену этого газа.
Источник