Порфирины миоглобин и гемоглобин

Гемоглобин и миоглобин.

Гемоглобин – состоит из белка глобина и небелковой части гема, в составе которого имеется атом Fе(II). Молекула Нb содержит 4 гема и является белком с четвертичной структурой (4 субъединицы – 2 α-цепи и 2 β-цепи, каждая из которых имеет свою третичную структуру и особым образом уложена вокруг кольца гема). Каждая из субъединиц похожа на молекулу миоглобина. Молекула гемоглобина способна присоединять 4 молекулы О2. Гемоглобин переносит кислород от легких к тканям, а углекислый газ в обратном направлении. Нb + О2 → НbО2 – оксигемоглобин – в капиллярах легких Нb насыщается кислородом при высоком парциальном давлении (100 мм рт. ст.).

В капиллярах тканей, где парциальное давление кислорода низкое (5 мм рт. ст.) НbО2 → на Нb и О2. Кислород переходит в ткани, а освободившийся Нb соединяется с поступившим из тканей СО2 и превращается в НbСО2 – карбгемоглобин, который переносится с кровью к легким. В легочных капиллярах НbСО2 → Нb + СО2. СО2 выводится из организма при выдыхании, а Нb вновь насыщается кислородом.

Сравнение зависимости насыщения от парциального давления кислорода показывает, что при парциальных давлениях кислорода, характерных для тканей, гемоглобин отдает значительные количества кислорода. В гемоглобине происходит перемещение атома железа в плоскость гема с одновременным изменением конформации полипептидной цепи, но так как молекула Нb имеет четвертичную структуру и отдельные цепи связаны между собой, то это позволяет передать изменения конформации на область связи между полипептидными цепями. Это изменяет положение в пространстве всей молекулы и облегчает доступ О2 к остальным гемам молекулы Нb. Одновременно это изменение конформации сопровождается появлением на поверхности групп, которые, диссоциируя, отдают протоны (Н+) в окружающую среду. При понижении парциального давления кислорода события повторяются в обратном направлении: отдача кислорода идет по мере снижения парциального давления, гемоглобин переходит в другое конформационное состояние, при этом из окружающей среды (ткань), где высока концентрация протонов, протоны присоединяются к гемоглобину. Такие изменения конформации позволяют гемоглобину не только регулировать обеспечение кислородом тканей, но и участвовать в поддержании кислотно-основного равновесия в организме.

При отравлении угарным газом в крови образовывается карбоксигемоглобин Нb + СО → НbСО – прочное соединение, препятствует образованию НbО2 и транспорту кислорода. Возникает кислородное голодание.

Различные формы Нb определяются методом спектрального анализа. У взрослого человека молекула НbА (2 α-цепи и 2 β-цепи). Но от целого ряда условий состав цепей гемоглобина может меняться. У плода НbF (фетальный – 2 α-цепи, 2 γ-цепи) – он лучше связывает кислород при его относительной недостаточности в период внутриутробного развития.

В результате определенных нарушений генетического аппарата клетки Нb патологический, а заболевания – гемоглобинопатии наследственного происхождения.

Классическим примером является серповидно-клеточная анемия(аномальный гемоглобин – причина). Синтезируется β-цепь необычного состава, в которой валин занимает место глутаминовой кислоты, присутствующей в нормальном НbА. Изменение такое вызывает нарушение структуры и свойств Нb, который обозначается НbS – он легко выпадает в осадок, обладает сниженной способностью переносить кислород. В результате эритроциты, содержащие НbS приобретают форму серпа. Клинически: нарушается кровообращение и дыхание, иногда летальный исход.

Миоглобин – хромопротеид, содержащийся в мышцах. Он обладает простетической группой – гемом, циклическим тетрапирролом, придающим ему красный цвет. Тетрапиррол состоит из 4 пиррольных колец, соединенных в плоскую молекулу метиленовыми мостиками. Атом железа занимает центральное положение в этой плоской молекуле. Железо в составе гема цитохромов способно менять свою валентность, в гемоглобине и миоглобине изменение валентности железа нарушает их функцию. Главная функция и гемоглобина и миоглобина – связывание кислорода.

Миоглобин – сферическая молекула, состоит из 153 аминокислот с общей молекулярной массой 17000. он состоит из одной цепи, аналогичной субъединице Нb. На уровне вторичной структуры он образует 8 α-спиральных участков, захватывающих почти 75% всех аминокислот молекулы. Атом железа в геме миоглобина, не связанный с кислородом, выступает из плоскости молекулы на 0,03 нм. В оксигенированной форме атом железа как бы погружается в плоскость молекулы гема. Образуя связь с одной из молекул гистидина глобиновой части, железо при соединении с кислородом изменяет и конформацию белка. Миоглобин удобен для хранения кислорода, но не удобен для транспорта его по крови. Это объясняется процессом насыщения миоглобина в зависимости от парциального давления кислорода. Так как в легких парциальное давление кислорода 13,3 кПа, миоглобин хорошо бы насыщался кислородом, но в венозной крови это давление составляет 5,3 кПа, а в мышцах ещё меньше – 2,6 кПа. Миоглобин в таких условиях сможет отдавать мало кислорода и будет недостаточно эффективен в транспорте кислорода от легких к тканям.

Читайте также:  Сродство гемоглобина к кислороду это

Гем –простетическая группа многих важных с точки зрения функций белков.

Гем – небелковая часть, в составе находится Fе (ΙΙ), гем входит в состав флавопротеинов, гемопротеидов, гемоглобина, миоглобина, каталазы, пероксидазы, цитохромов.

Знание вопросов биосинтеза и распада гема призвано помочь в понимании роли гемопротеинов в организме. Нарушение этих процессов связано с развитием заболеваний. Так, с нарушением биосинтеза гема связана группа заболеваний – порфирии.

Порфирии – группа заболеваний с нарушением биосинтеза гемма. группа заболеваний с нарушением биосинтеза гемма. Наблюдается накопление побочных промежуточных продуктов, которые откладываются в различных органах или выделяются в повышенных количествах с калом или мочой. Появление в моче в значительных количествах веществ незавершенного синтеза гемма либо продуктов его распада (копропорфирин и уропорфирин) вызывает порфиринурию. Моча пурпурно-красного цвета. Это бывает при некоторых поражениях печени, кишечных кровотечениях, интоксикациях. Порфиринурия является одним из признаков отравления свинцом, когда нарушается транспорт Fe, необходимого для синтеза гемоглобина.

Гораздо чаще встречаются патологические состояния, связанные с распадом гема и нарушением выведения из организма продуктов его катаболического превращения. Наиболее распространенной является желтуха.

Схема синтеза гема

глицин + сукцинил – КоА
синтаза 5-аминолевулиновой кислоты
5 – аминолевулиновая кислота
 
Уропорфириноген ΙΙΙ В цитоплазме клеток

Копропорфириноген ΙΙΙ

Протопорфирин ΙΧ

В митохондриях + Fe2+

клетки

Гем

Из многих представителей хромопротеидов для человека наибольшее значение имеет гемоглобин. Хромопротеиды растительного и животного происхождения, находящиеся в пищевых продуктах, подвергаются действию ферментов пищеварительного тракта.

Гемоглобин пищи, находящийся в ней в денатурированном состоянии, легко гидролизуется, распадаясь на простетическую группу и белок. Белок расщепляется пепсином и трипсином с образованием пептидов и аминокислот. Следовательно, глобиновая часть гемоглобина подвергается обычным превращениям в ЖКТ, которые свойственны простым белкам. Простетическая группа – гемм – окисляется в гематин. Гематин всасывается в кишечнике очень плохо. Эти пигменты выделяются с калом частью в неизмененном виде, частью в виде различных продуктов, образующихся под влиянием бактерий кишечника. Обычные химические способы обнаружения крови в кале, имеющие большое значение для клиники, основаны на реакциях гематина, и могут дать достоверные результаты только в том случае, если диета не содержит мяса, в котором присутствует миоглобин.

Время жизни эритроцитов у взрослого организма составляет около 4 месяцев. Спустя этот период времени эритроциты разрушаются в основном в печени, селезенке и костном мозге. В ходе разрушения из эритроцитов высвобождается гемоглобин (8 – 9 г в сутки).

Источник

МИОГЛОБИН И ГЕМОГЛОБИН. ТРАНСПОРТ КИСЛОРОДА — Студопедия

МИОГЛОБИН – сложный глобулярный белок, третьего уровня структурной организации, молекула которого состоит из 1 полипептидной цепи и содержит 153 аминокислоты. В миоглобине содержится железопорфириновая группа (гем), и он способен обратимо присоединять кислород.

Миоглобин содержится в клетках скелетных мышц. Пептидная цепь миоглобина напоминает длинную колбасу, причудливо скрученную. Было показано, что остов молекулы миоглобина состоит из 8 относительно прямолинейных отрезков, разделенных между собой местами сгибов. Каждый отрезок закручен в виде a-спирали. Все спирали являются правыми. 70 % аминокислотных остатков входят в состав спирализованных участков.

Свойства миоглобина:

1. молекула миоглобина компактна (внутри нее может уместиться 4Н2О);

2. все полярные R- группы аминокислотных остатков расположены на внешней поверхности молекулы и находятся в гидратированном состоянии, т.е. связаны с Н2О;

3. неполярные, или гидрофобные R- группы располагаются в глубине молекулы и защищены от соприкосновения с Н2О;

4. остатки пролина встречаются только в метах сгибов пептидной цепи (пролин нарушает a-спираль). В местах сгибов находятся и другие аминокислоты, которые неспособны легко образовывать a-спираль (изолейцин, серин), и аминокислоты, боковые цепи которых несут одинаковые заряды при рН7;

5. у миоглобинов, выделенных из разных млекопитающих, конформация пептидных цепей сходна (но они несколько отличаются по аминокислотному составу).

ГЕМ — комплекс порфирина и иона железа в степени окисления +2.

Ион железа встроен в кольцо порфирина таким образом, что четыре координационные связи из шести (в состоянии гибридизации sp3d2 связи у шестикоординационного железа направлены к вершинам октаэдра) затрачены на образование связей с атомами азота, еще одна связана с азотом имидазольного остатка ГИС полипептидной цепи (проксимальный Гистидин F8), а другая- также с имидазольным остатком другого ГИС (дистальный ГИС Е7). Молекула кислорода присоединяется между остатком дистального ГИС и железом. Изменения степени окисления железа при этом не происходит. Порфириновое кольцо (ГЕМ) не находится на плоскости молекулы белка, а частично погружено в него. Молекула кислорода присоединяется к гему, входя как бы через открывающуюся дверцу. Пока остается несным, дожидается молекула кислорода случайного открывания двери, или существует какой-то механизм, пускающий кислород к гему.

Читайте также:  Гемоглобин низкий лечение уколами

Миоглобин сосредоточен, главным образом, в мышцах и его главной функцией является хранение кислорода. Скорость насыщения миоглобина кислородом намного превышает таковую для гемоглобина. Миоглобин мало приспособлен для транспортировки кислорода из легких в ткани, поскольку скорость отдачи кислорода в тканях невелика (при давлении 1 мм рт. ст. примерно половина миоглобина все еще не отдает кислород).

Вопросы транспортировки кислорода решаются при участии белка четвертичной структуры — гемоглобина.

ЧЕТВЕРТИЧНАЯ СТРУКТУРА ГЕМОГЛОБИНА. При помощи рентгеноструктурного анализа Перутцем и его сотрудниками в Кембридже установлены третичная и четвертичная структуры гемоглобина. Гемоглобин содержится в эритроцитах и служит для переноса кислорода. Молекулярная масса гемоглобина 64500. Молекула состоит из 4 отдельных полипептидных цепей: 2 a-цепей (141 остаток аминокислот) и 2 b- цепей (146 остатков аминокислот в каждой), каждая из которых связана нековалентной связью с остатками гема. Каждая из 4 отдельных цепей гемоглобина свернута нерегулярным образом и состоит из ряда a- спиральных участков, разделенных местами сгибов.

a- и b- цепи гемоглобина примерно на 70 % состоят из a-спиральных участков. По своей третичной структуре a- и b-цепи очень сходны, они образованы из a- спиральных участков одинаковой длины, согнутых под одинаковыми углами и в одних и тех же направлениях. Третичная структура a- и b-цепей гемоглобина очень сходна с третичной структурой единственной цепи миоглобина. Сходная функция гемоглобина и миоглобина, обусловленная способностью обратимо связывать О2, объясняется сходством третичной структуры.

Согласно данным рентгеноструктурного анализа молекула гемоглобина по своей форме приближается к сфере диаметром ~ 5,5 нм. 4 полипептидные цепи уложены относительно друг друга приблизительно в виде тетраэдра, в результате чего возникает характерная четвертичная структура гемоглобина.

Это очень компактная структура. Большинство гидрофобных R- групп аминокислот находится внутри глобулы, а большинство гидрофильных R- групп – снаружи. В молекуле гемоглобина возникает небольшое число контактов между одинаковыми цепями (2 a- и 2 b- цепями) и множество контактов между a- и b- цепями. В образовании таких контактов принимают участие в основном гидрофобные R- группы аминокислотных остатков.

При присоединении к гемоглобину кислорода расстояние между 2 b- цепями гемоглобина уменьшается и изменяется четвертичная структура. Таким образом, гемоглобин и оксигемоглобин (насыщенный кислородом) различаются по своей четвертичной структуре.

Четвертичная структура олигомерных белков также определяется первичной аминокислотной последовательностью входящих в их состав отдельных полипептидных цепей. Олигомерные белки (гемоглобин) обнаруживают способность к самосборке.

Главное отличие гемоглобина от миоглобина заключается в проявлении особого рода эффектов — кооперативных, влияющих на скорости присоединения- отсоединения молекул кислорода. Каждая молекула гемоглобина способна присоединять и переносить четыре молекулы кислорода, при этом кооперативность проявляется в том, что как присоединение, так и отсоединение каждой последующей молекулы кислорода облегчается в результате структурных изменений в конформации молекулы, которых у гемоглобина имеется две основных- оксигенированная и дезоксигенированная. Промежуточные состояния нестабильны. Предполагается следующий механизм кооперативного эффекта. Присоединение первой молекулы кислорода приводит к тому, что атом железа смещается от своего места примерно на 0,4-0,6 ангстрем, вызывая изменения конформации субъединицы. Изменившаяся конформация по аллостерическому эффекту облегчает присоединение кислорода к другой субъединице и т.д. Это позволяет максимально ускорить процесс присоединения кислорода в легких (рО2 = 100 мм рт. ст.). При переносе оксигенированного гемоглобина в капилляры тканей (рО2 = 5 мм рт. ст.) отсоединение молекул кислорода протекает также быстро, по кооперативному эффекту. Известны, впрочем, и химические регуляторы скорости и полноты присоединения кислорода. К ним, в частности, относится 2,3- дифосфоглицериновая кислота. Она облегчает присоединение кислорода у организмов, обитающих в высокогорных районах.

Источник

Миоглобин

Миоглобин – белок, который связывает кислород и поставляет его скелетным мышцам. Его концентрация в крови возрастает при повреждении скелетных мышц или миокарда.

Синонимы английские

Myoglobin.

Метод исследования

Иммунотурбидиметрия.

Единицы измерения

Мкг/л (микрограмм на литр).

Какой биоматериал можно использовать для исследования?

Венозную кровь.

Как правильно подготовиться к исследованию?

  • Не принимать пищу в течение 2-3 часов перед исследованием (можно пить чистую негазированную воду).
  • Исключить физическое и эмоциональное перенапряжение в течение 30 минут до исследования.
  • Не курить в течение 30 минут до исследования.

Общая информация об исследовании

Миоглобин – белок, который содержится в скелетной мускулатуре и сердечной мышце – миокарде. Использование запасенного О2 в мышечной ткани начинается при выраженном снижении парциального давления кислорода в мышцах. Он способен связывать кислород в мышечных клетках, что дает им энергию для сокращения. В норме миоглобина в крови настолько мало, что он не определяется лабораторными методами. При повреждении скелетных мышц или миокарда миоглобин в больших количествах попадает в кровоток. Он не является специфичным маркером повреждения миокарда, в отличие от креатинкиназы МВ и тропонина, однако реагирует на гибель мышечных клеток сердца одним из первых – через 1-2 часа его концентрация в крови увеличивается.

Читайте также:  Что есть при низком гемоглобине кормящей маме

Миоглобин и гемоглобин относят к гемопротеинам, они содержат порфириновое производное — гем, который обеспечивает их красный цвет и способность взаимодействовать с О2. Гемоглобин ответственен за транспорт кислорода, а миоглобин – за его депонирование. Механизм действия обоих белков обуславливается строением гема, состоящего из двухвалентного железа и порфирина. Именно молекула гема отвечает за тропность белков к кислороду. Миоглобин связывает переносимый гемоглобином кислород, создавая депо О2. Когда в организме начинается кислородное голодание (после тяжелой физической нагрузки), он освобождает связанный кислород и «передает» его окислительным системам клеток, где запускается процесс окислительного фосфорилирования, в результате которого образуется необходимая для работы мышц энергия.

Миоглобин фильтруется почками и выводится из организма с мочой. Если происходит массивное повреждение мышц, например, в результате серьезной травмы, он начинает в больших количествах поступать в кровь и может повреждать почки, вызывая острую почечную недостаточность. При отсутствии воспалений или повреждений мышечной ткани он практически не фиксируется в крови. Это его свойство используется для уточнения диагноза «инфаркт миокарда». 

Для чего используется исследование?

Анализ на миоглобин, как правило, назначается вместе с другими маркерами повреждения сердечной мышцы, такими как креатинкиназа МВ, и используется для того, чтобы подтвердить или исключить инфаркт миокарда у пациентов с острой болью в сердце или другими симптомами.

Миоглобин начинает повышаться через 1-2 часа после повреждения миокарда, достигает своего пика через 8-12 часов и к концу дня обычно приходит в норму. Тропонин – «золотой стандарт» в определении инфаркта, так как он является более специфичным, однако преимущество миоглобина состоит в том, что он реагирует максимально рано, тем самым позволяя быстрее поставить диагноз. С другой стороны, необходимо понимать, что миоглобин может повышаться и без повреждения сердечной мышцы. Таким образом, отрицательный результат анализа на миоглобин исключает инфаркт, положительный – требует подтверждения тропонином.

Иногда тест на миоглобин необходим людям с серьезными травмами для того, чтобы определить вероятность поражения почек.

Когда назначается исследование?

Анализ на миоглобин назначается при подозрении на острый инфаркт миокарда. Кровь берут сразу при поступлении пациента в стационар и потом еще несколько раз через каждые 2-3 часа.

Такой тест обычно назначается вместе с другими маркерами повреждения сердечной мышцы, такими как креатинкиназа МВ и тропонин, что позволяет более уверенно судить о наличии или, напротив, отсутствии острого повреждения сердечной мышцы.

Кроме того, это исследование может понадобиться после массивных повреждений скелетной мускулатуры, чтобы оценить риск повреждения почек и острой почечной недостаточности.

Что означают результаты?

Референсные значения: 0 — 70 мкг/л.

Обычно содержание миоглобина в крови настолько несущественно, что даже не может быть измерено.

Повышение уровня миоглобина в крови говорит о недавнем повреждении скелетных или сердечной мышц. Назначение тропонина или креатинкиназы МВ позволяет уточнить причину повышения миоглобина. Если в течение 12 часов боли в грудной клетке повышения миоглобина не произошло, вероятность инфаркта миокарда крайне маловероятна.

Так как миоглобин, помимо сердца, содержится еще в скелетной мускулатуре, он может повышаться и в других ситуациях:

  1. синдром длительного сдавливания (краш-синдром) возникает в результате раздавливания или размозжения мышечной ткани, а также длительного прекращения кровотока по конечности;
  2. любые травмы;
  3. после хирургических операций;
  4. судороги любого происхождения;
  5. любые заболевания, приводящие к повреждению мышц: дерматомиозит, полимиозит, мышечная дистрофия и др.

Что может влиять на результат?

  • Злоупотребление амфетаминами и алкоголем повышает уровень миоглобина.
  • Так как миоглобин выводится через почки, его уровень может быть повышен при почечной недостаточности.



Важные замечания

  • Внутримышечные инъекции и физическая нагрузка не влияют на уровень миоглобина в крови.
  • Повышенный уровень миоглобина – недостаточное основание для постановки диагноза «инфаркт миокарда». Необходима комплексная оценка состояния пациента, которую может провести только врач. При этом учитывается характер болевого синдрома, история развития заболевания, ЭКГ, результаты других лабораторных и инструментальных обследований.
  • В норме миоглобин не определяется в моче, настолько его в ней мало. Если уровень миоглобина повышается так, что его становится возможным измерить, то это указывает на вероятность почечной недостаточности.

Также рекомендуется

  • Тропонин I
  • Креатинкиназа общая
  • Креатинкиназа МВ
  • Аланинаминотрансфераза (АЛТ)
  • Аспартатаминотраснфераза (АСТ)
  • Лактатдегидрогеназа 1, 2 (ЛДГ 1, 2 фракции)

Кто назначает исследование?

Врач общей практики, терапевт, кардиолог.

Источник