Сопряжение процессов оксигенирования гемоглобина с его буферным действием

Буферные системы крови. Алкалоз, ацидоз, резервная щелочность крови. Роль почек в поддержании pH

Буферные системы- это комплекс слабых кислоты и основания, который способен препятствовать сдвигу реакции в ту или иную сторону.

1. Бикарбонатная состоит из свободной угольной кислоты и гидрокарбонатов натрия и калия.

2. Фосфатная является комплексом гидрофосфата и дигидрофосфата натрия

3. Белковая буферная система. Белки являются буфером благодаря своей амфотерности.

4. Гемоглобиновая — самая мощная буферная система. Состоит из восстановленного гемоглобина икалиевой соли оксигемоглобина.

Физиологические механизмы поддержания кислотно-щелочного равновесия обеспечиваются легкими, почками, ЖКТ, печенью.

Почки участвуют в регуляции с помощью следующих механизмов:

1. секреция эпителием канальцев водородных ионов, образовавшихся из угольной кислоты, в мочу;

2. образование в клетках эпителия гидрокарбонатов, которые поступают в кровь и увеличивают ее щелочной резерв. Они образуются из угольной кислоты и катионов натрия и калия. Первые 2 процесса обусловлены наличием в этих клетках карбоангидразы;

3. синтез аммиака, катион которого может связываться с катионов водорода;

4. обратное всасывание в канальцах из первичной мочи в кровь гидрокарбонатов;

5. фильтрация в мочу избытка кислых и щелочных соединений.

При определенных условиях реакция крови может изменяться. Сдвиг реакции крови в кислую сторону, называется ацидозом, в щелочную — алкалозом. Эти изменения рН могут быть дыхательными и недыхательными (метаболическими). Дыхательные изменения реакции крови обусловлены изменениями содержания углекислого газа. Недыхательные — изменениями бикарбонат-анионов.

«Щелочной резерв» -показатель функциональных возможностей буферной системы крови; количество двуокиси углерода (в мл), которое может быть связано 100 мл плазмы крови, парциальное давление двуокиси углерода составляет 40 мм ртутного столба.

28

Гемоглобин и его свойства. Виды гемоглобина в организме взрослых и детей (примитивный, фетальный, миоглобин, гемоглобин взрослого). Цветной показательно крови.

Гемоглобин (Нb) это хемопротеин, содержащийся в эритроцитах. Молекулу гемоглобина образуют четыре субъединицы, каждая из которых включает гем, соединенный с атомом железом, и белковую часть — глобин. У взрослого человека гемоглобин содержит две альфа- и две бета-полипепетидных цепи. Он называется А-гемоглобином. В первые три месяца внутриутробного развития в эритроцитах находится гемоглобин типа G1 и G2. В последующие периоды внутриутробного развития и в первые месяцы после рождения основную часть составляет фетальный гемоглобин. В его структуре две альфа- и две гамма-полипептидные цепи. При рождении до 50-80% гемоглобина составляет F-гемоглобин, а 20-40 % А-гемоглобин.

Соединение гемоглобина с кислородом — оксигемоглобин. Он имеет ярко-алый цвет.

Гемоглобин, отдавший кислород в капиллярах тканей, называется дезоксигемоглобином или восстановленным (Нb). У него темно-вишневая окраска. Образуется легко карбгемоглобин.

В некоторых случаях гемоглобин образует патологические соединения. При отравлении угарным газом образуется карбоксигемоглобин. Сродство гемоглобина с окисью углерода значительно выше, чем с кислородом, а скорость диссоциации карбоксигемоглобина в 200 раз меньше, чем оксигемоглобина.

При отравлении сильными окислителями, например нитритами, марганцевокислым калием, красной кровяной солью, образуется метгемоглобин. В этом соединении гемоглобина железо становится трехвалентным.

Миоглобин — белок, который связывает кислород и поставляет его скелетным мышцам

Примитивный гемоглобин — синтезируется в эмбриональном желточном мешке через несколько недель после оплодотворения.

Цветовой показатель. Он отражает степень насыщения эритроцитов гемоглобином. Это отношение содержания гемоглобина в крови к количеству эритроцитов. В норме его величина составляет 0,85-1,05.

29

Соседние файлы в предмете Нормальная физиология

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник

.

Щелочной компонент эритроцитной гидрокарбонатной буферной системы представлен не натриевой, а калиевой солью угольной кислоты (КНСОз). Во внутренней среде эритроцитов в норме поддерживается постоянное значение pH, равное 7,25. Так как pH внутри эритроцитов меньше, чем в плазме крови, то и соотношение концентраций

соли (HCOJ) и кислоты (Н2С03) здесь несколько меньше.

Белковая система гемоглобин-оксигемоглобин играет наиболее важную роль в эритроцитах, которая проявляется в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболического СОг) и в поддержании постоянства pH внутри эритроцитов (а в результате и в крови в целом). Эритроцитная буферная система тесно связана с гидрокарбонатной системой.

Среди белковых буферных систем наибольшим буферным действием обладает гемоглобин-оксигемоглобиновая буферная система, которую можно представить в виде равновесия НЬ02 2). Диссоциация НЬ02 в тканевых капиллярах с образованием НЬ создает благоприятные условия для связывания угольной кислоты (Н2СОз), а образование в легких НЬ02 способствует высвобождению угольной кислоты и удалению ее из организма при дыхании (в виде СОД. Роль системы НЬ02 НЬ как буфера заключается в том, что она усиливает действие других буферов крови.

В эритроцитах есть механизм сбережения оснований (анионов

НС03) в организме, известный как эффект Амбурже. Он состоит в том, что образующийся в тканях углекислый газ превращается в эритроцитах в угольную кислоту (Н2СОз). В свою очередь Н2СОз

диссоциирует на ион Н+ и анион HCOJ под влиянием фермента карбоангидразы (угольной ангидразы) эритроцитов. Ион водорода при этом захватывается буферными системами внутри клетки (гемоглобин, фосфаты), а анион гидрокарбоната возвращается в плазму крови, обмениваясь на содержащийся в ней анион хлора, поступающий в эритроцит. В эритроцитах анион jtrfopa связывается с катионом калия. В легких образующийся оксигемоглобин связывает значительную часть калия, в результате чего анион хлора вытесняется за пределы эритроцита и связывается с катионом натрия, освобожденным при удалении углекислоты. В итоге происходит активное образование и задержка в организме анионов НСО3 (оснований) и удаление угольной кислоты.

Степень связывания кислорода с гемоглобином существенно зависит от сдвигов pH плазмы крови: при сдвиге pH в кислую сторону (ацидоз, pH снижается) сродство гемоглобина к кислороду снижается и соответственно уменьшается насыщение гемоглобина кислородом. При сдвиге pH в щелочную сторону (алкалоз, pH повышается) имеет место обратная зависимость: сродство гемоглобина к кислороду и насыщение его кислородом возрастают. Эта закономерность носит название эффект Бора.

Если снижение щелочного резерва плазмы крови не влечет за собой изменения pH крови, то такой ацидоз носит название компенсированного ацидоза. При некомпенсированном ацидозе щелочной резерв истощается, что наблюдается при особо тяжелых заболеваниях, например при диабете (диабетическая кома).

При избыточном поступлении в организм с пищей щелочных веществ или при избыточной гипервентиляции легких щелочной резерв плазмы крови повышается и проявляется алкалоз. В желудке человека pH » 5, и повышение кислотности приводит к несварению желудка.

Читайте также:  Из за чего повышается уровень гемоглобина в крови

Источник

Буферные системы крови

Установлено, что состоянию нормы соответствует определенный диапазон колебаний рН крови — от 7,37 до 7,44 со средней величиной 7,40 . Кровь представляет собой взвесь клеток в жидкой среде, поэтому ее кислотно-основное равновесие поддерживается совместным участием буферных систем плазмы и клеток крови. Важнейшими буферными системами крови являются бикарбонатная, фосфатная, белковая и наиболее мощная гемогло-биновая.

Бикарбонатная буферная система — мощная и, пожалуй, самая управляемая система внеклеточной жидкости и крови. На долю бикарбонатного буфера приходится около 10% всей буферной емкости крови. Бикарбонатная система представляет собой сопряженную кислотно-основную пару, состоящую из молекулы угольной кислоты Н2СО3, выполняющую роль донора протона, и бикарбонат-иона НСО3-, выполняющего роль акцептора протона:

Для данной буферной системы величину рН в растворе можно выразить через константу диссоциации угольной кислоты (рКН2СО3) и логарифм концентрации недиссоциированных молекул Н2СО3 и ионов HCO3-:

Истинная концентрация недиссоциированных молекул Н2СО3 в крови незначительна и находится в прямой зависимости от концентрации растворенного углекислого газа (СО2 + Н2О <=> Н2СО3). Поэтому удобнее пользоваться тем вариантом уравнения, в котором рКH2СО3 заменена «кажущейся» константой диссоциации Н2СО3, учитывающей общую концентрацию растворенного СО2 в крови:

где K1- «кажущаяся» константа диссоциации Н2 С О3 ; [СО2(р)] — концентрация растворенного СО2.

При нормальном значении рН крови (7,4) концентрация ионов бикарбоната НСО3 в плазме крови превышает концентрацию СО2 примерно в 20 раз. Бикарбонатная буферная система функционирует как эффективный регулятор в области рН 7,4.

Механизм действия данной системы заключается в том, что при выделении в кровь относительно больших количеств кислых продуктов водородные ионы Н+ взаимодействуют с ионами бикарбоната НСО3-, что приводит к образованию слабодиссоциирующей угольной кислоты Н2СО3. Последующее снижение концентрации Н2СО3 достигается в результате ускоренного выделения СО2 через легкие в результате их гипервентиляции (напомним, что концентрация Н2СО3 в плазме крови определяется давлением СО2 в альвеолярной газовой смеси).

Если в крови увеличивается количество оснований, то они, взаимодействуя со слабой угольной кислотой, образуют ионы бикарбоната и воду. При этом не происходит сколько-нибудь заметных сдвигов в величине рН. Кроме того, для сохранения нормального соотношения между компонентами буферной системы в этом случае подключаются физиологические механизмы регуляции кислотно-основного равновесия: происходит задержка в плазме крови некоторого количества СО2 в результате гиповентиляции легких . Как будет показано далее, данная буферная система тесно связана с гемоглобиновой системой.

Читайте также:  105 гемоглобин у ребенка

Фосфатная буферная система представляет собой сопряженную кислотно-основную пару, состоящую из иона Н2РО4- (донор протонов) и иона НРО42- (акцептор протонов):

Роль кислоты в этой системе выполняет однозамещенный фосфат NaH2PO4, а роль соли двузамещенный фосфат — Na2HPO4.

Фосфатная буферная система составляет всего лишь 1% от буферной емкости крови. В других тканях эта система является одной из основных. Для фосфатной буферной системы справедливо следующее уравнение:

Во внеклеточной жидкости, в том числе в крови, соотношение [НРО42-]: [Н2РО4-] составляет 4:1. Величина рКН2РО4- равна 6,86.

Буферное действие фосфатной системы основано на возможности связывания водородных ионов ионами НРО42- с образованием Н2РО4- (Н+ + + НРО42- -> Н2РО4-), а также ионов ОН- с ионами Н2РО4- (ОН- + + Н2 Р О4- -> HPO42-+ H2O). Буферная пара (Н2РО4—НРО42-) способна оказывать влияние при изменениях рН в интервале от 6,1 до 7,7 и может обеспечивать определенную буферную емкость внутриклеточной жидкости, величина рН которой в пределах 6,9-7,4. В крови максимальная емкость фосфатного буфера проявляется вблизи значения рН 7,2. Фосфатный буфер в крови находится в тесном взаимодействии с бикарбонатной буферной системой. Органические фосфаты также обладают буферными свойствами, но мощность их слабее, чем неорганического фосфатного буфера.

Белковая буферная система имеет меньшее значение для поддержания КОР в плазме крови, чем другие буферные системы.

Белки образуют буферную систему благодаря наличию кислотно-основных групп в молекуле белков: белок-Н+ (кислота, донор протонов) и белок (сопряженное основание, акцептор протонов). Белковая буферная система плазмы крови эффективна в области значений рН 7,2-7,4.

Гемоглобиновая буферная система — самая мощная буферная система крови. Она в 9 раз мощнее бикарбонатного буфера; на ее долю приходится 75% от всей буферной емкости крови.

Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и углекислого газа. Константа диссоциации кислотных групп гемоглобина меняется в зависимости от его насыщения кислородом. При насыщении кислородом гемоглобин становится более сильной кислотой (ННbО2). Гемоглобин, отдавая кислород, превращается в очень слабую органическую кислоту (ННb).

Итак, гемоглобиновая буферная система состоит из неионизированного гемоглобина ННb (слабая органическая кислота, донор протонов) и калиевой соли гемоглобина КНb (сопряженное основание, акцептор протонов). Точно так же может быть рассмотрена оксигемоглобиновая буферная система. Система гемоглобина и система оксигемоглобина являются вза-имопревращающимися системами и существуют как единое целое. Буферные свойства гемоглобина прежде всего обусловлены возможностью взаимодействия кисло реагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:

КНb + Н2СO3-> КНСO3 + ННb.

Именно таким образом превращение калийной соли гемоглобина эритроцитов в свободный ННb с образованием эквивалентного количества бикарбоната обеспечивает поддержание рН крови в пределах физиологически допустимых величин, несмотря на поступление в венозную кровь огромного количества углекислого газа и других кисло реагирующих продуктов обмена.

Гемоглобин (ННb), попадая в капилляры легких, превращается в окси-гемоглобин (ННbО2), что приводит к некоторому подкислению крови, вытеснению части Н2СО3 из бикарбонатов и понижению щелочного резерва крови . Перечисленные буферные системы крови играют важную роль в регуляции кислотно-основного равновесия. Как отмечалось, в этом процессе, помимо буферных систем крови, активное участие принимают также система дыхания и мочевыделительная система.

Источник

Буферные системы крови

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2018; проверки требуют 19 правок.

Бу́ферные систе́мы кро́ви (от англ. buffer, buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в крови[1]. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов.

Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37-7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены следующими системами[1][2]:

  • бикарбона́тная (водородкарбонатная) бу́ферная систе́ма;
  • фосфа́тная бу́ферная систе́ма;
  • белко́вая бу́ферная систе́ма;
  • гемоглоби́новая бу́ферная система;

Помимо этих систем также активно участвуют дыхательная и мочевыделительная системы[1].

Бикарбонатная буферная система[править | править код]

Одна из самых мощных и вместе с тем самая управляемая система[2] внеклеточной жидкости и крови, на долю которой приходится около 53 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H2CO3, являющейся источником протона, и бикарбонат-аниона HCO3−, выполняющего функцию акцептора протона:

Вследствие того, что концентрация гидрокарбоната натрия в крови значительно превышает концентрацию H2CO3, буферная ёмкость этой системы будет значительно выше по кислоте. Иначе говоря, гидрокарбонатная буферная система особенно эффективно компенсирует действие веществ, увеличивающих кислотность крови. К числу таких веществ прежде всего относят молочную кислоту, избыток которой образуется в результате интенсивной физической нагрузки. Гидрокарбонатная система наиболее «быстро» отзывается на изменение pH крови[2].

Читайте также:  Тест на кровь и гемоглобин в моче

Фосфатная буферная система[править | править код]

В крови ёмкость фосфатной буферной системы невелика (составляет около 2 % общей буферной ёмкости), в связи с низким содержанием фосфатов в крови. Фосфатный буфер выполняет значительную функцию в поддержании физиологических значений рН во внутриклеточных жидкостях и моче.

Буфер образован неорганическими фосфатами. Функцию кислоты в этой системе выполняет однозамещённый фосфат (NaH2PО4), а функцию сопряженного основания — двузамещённый фосфат (Na2HPО4). При рН 7,4 соотношение [НРО42-/Н2РО4-] равняется поскольку при температуре 25+273,15K pKa, ортоII=7,21[3], при этом средний заряд аниона ортофосфорной кислоты < q >=((-2)*3+(-1)*2)/5=-1,4 единиц заряда позитрона.

Буферные свойства системы при увеличении в крови содержания водородных ионов реализуются за счет их связывания с ионами НРО42- с образованием Н2РО4-:

а при избытке ионов ОН- — за счет связывания их с ионами Н2РО4-:

Фосфатная буферная система крови тесно взаимосвязана с бикарбонатной буферной системой.

Белковая буферная система[править | править код]

В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия (7-10 % буферной ёмкости).

Белки́ плазмы крови благодаря наличию кислотно-основных групп в молекулах белков (белок-H+ — кислота, источник протонов и белок− — сопряжённое основание, акцептор протонов) образуют буферную систему, наиболее эффективную в диапазоне pH 7,2-7,4[1].

Основную часть белков плазмы крови (около 90 %) составляют альбумины и глобулины. Изоэлектрические точки этих белков (число катионных и анионных групп одинаково, заряд молекулы белка равен нулю) лежат в слабокислой среде при pH 4,9-6,3, поэтому в физиологических условиях при pH 7,4 белки находятся преимущественно в формах «белок-основание» и «белок-соль».

Буферная ёмкость, определяемая белками плазмы, зависит от концентрации белков, их вторичной и третичной структуры и числа свободных протон-акцепторных групп. Эта система может нейтрализовать как кислые, так и основные продукты. Однако вследствие преобладания формы «белок-основание» её буферная ёмкость значительно выше по кислоте.

Буферная ёмкость свободных аминокислот плазмы крови незначительна как по кислоте, так и по щелочи. При физиологическом значении pH их мощность мала. Практически только одна аминокислота — гистидин — обладает значительным буферным действием при значении pH, близком к плазме крови.[2]

Эритроциты[править | править код]

Во внутренней среде эритроцитов в норме поддерживается постоянное значение pH, равное 7,30. Здесь также действуют гидрокарбонатная и фосфатная буферные системы. Однако их мощность отличается от таковой в плазме крови. Кроме того, в эритроцитах белковая система гемоглобин-оксигемоглобин играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом. Эта буферная система в эритроцитах тесно связана с гидрокарбонатной системой.[2]

Гемоглобиновая буферная система[править | править код]

Буферная система крови (75 % буферной ёмкости). Играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом.[2]

См. также[править | править код]

  • Буферный раствор

Примечания[править | править код]

  1. ↑ 1 2 3 4 Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник — 1990 г. — стр. 452-455.
  2. ↑ 1 2 3 4 5 6 Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое, стериотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.
  3. ↑ И.Т.Гороновский, Ю.П.Назаренко, Е.Ф.Некряч. Краткий справочник по химии. — Пятое издание, исправленное и дополненное. — Киев: Наукова Думка, 1987. — С. 348. — 828 с.

Литература[править | править код]

  • Березов Т. Т., Коровкин Б. Ф. [www.xumuk.ru/biologhim/ Биологическая химия: Учебник] / Под. ред. акад. АМН СССР С. С. Дебова.- 2-е изд., перераб. и доп.- М.: Медицина,- 1990.- 528 с., С. 452-455. ISBN 5-225-01515-8.
  • Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стереотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.

Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист.

Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым).

Источник