Транспорт холестерина из тканей в печень осуществляют

Диагностика и лечение нарушений липидного обмена

Липиды и липопротеиды

Холестерин выполняет важные биохимические функции в человеческом организме. Он необходим для синтеза гормонов, образования желчи. Он входит в состав всех
клеточных мембран организма. Синтезируется он главным образом в печени, в меньших количествах — во многих других органах.

Триглицериды входят в состав различных липопротеидов. После приема жирной пищи концентрация ТГ в крови быстро повышается, но в норме через 10-12 часов возвращается к исходному уровню. У больных сахарным диабетом, метаболическим синдромом, ожирением концентрация ТГ длительное время (более 12 часов) не приходит к норме. Такие больные предрасположены к развитию атеросклероза.

Жирные кислоты синтезируются в организме из продуктов распада углеводов и поступают с пищей. ЖК используются организмом в качестве источника энергии.

Фосфолипиды являются важным структурным компонентом клеточных мембран, однако их содержание в крови никак не связано с риском ИБС, поэтому при назначении гиполипидемической терапии, концентрация фосфолипидов в плазме крови не принимается во внимание.

Липиды транспортируются в крови в составе сложных надмолекулярных комплексов — липопротеидов (ЛП). ЛП представляют собой водорастворимые липиднобелковые структуры, в состав которых входят молекулы белков, свободного холестерина, эфиров холестерина и фосфолипидов. Основными ЛП в зависимости от их плотности, размеров и состава входящих липидов являются: ХМ, ЛПОНП, ЛППП, ЛПНП,

Хиломикроны — ХМ — наиболее крупные и наиболее легкие частицы. Изолированное повышение ХМ встречается редко и обычно свидетельствует о наследственном дефекте липопротеидлипазы и не является биохимическим маркером атеросклероза.

Липопротеиды очень низкой плотности — ЛПОНП — синтезируются в печени. Их повышение в сочетании с низким уровнем ЛПВП (ЛП высокой плотности) служит фактором риска развития атеросклероза.

Повышенная концентрация в крови ЛППП (липопротеидов промежуточной плотности) проявляется гиперхолестеринемией и гипертриглицеридемией. Довольно редко в клинической практике встречается изолированное повышение ЛППП, которое связано с наследственным дефектом печеночного фермента и сопровождается прогрессирующим атеросклерозом.

Липопротеиды низкой плотности — ЛПНП. Повышенное содержание в плазме ЛПНП отчетливо связано с развитием коронарного, каротидного и периферического атеросклероза. Именно ЛПНП является главной мишенью терапии.

Липопротеиды высокой плотности — ЛПВП — антиатерогенные ЛП частицы, которые осуществляют обратный транспорт холестерина из сосудистой стенки и макрофагов в печень, откуда он выводится из организма в составе желчных кислот. Уровень ЛПВП в плазме имеет обратную зависимость с развитием атеросклероза; чем ниже
содержание ЛПВП, тем выше вероятность развития атеросклероза.

Липопротеид(а) — Лп(а) — это атерогенная частица, похожая на ЛПНП; основным отличием между ними служит наличие в составе Лп(а) молекулы уникального апобелка -апо(а). Лп(а) учавствует в процессах атеротромбогенеза путем прикрепления тромба в участках сосудистой стенки, богатых Лп(а). Концентрация Лп(а) в крови человека напрямую зависит от тяжести атеросклеротических поражений коронарных, каротидных и периферических артерий. В настоящее время Лп(а) рассматривается как независимый биохимический маркер атеросклероза.

Классификация гиперлипидемий

Тип гиперлипидемии Уровень общего холестерина плазмы Уровень триглицеридов Липопротеиды Риск развития атеросклероза
l Повышен Повышен Хиломикроны в норме Нет
Па Повышен В норме ЛПНП Высокий
llb Повышен Повышен ЛПНП и ЛПОНП Высокий
lll Повышен Повышен ЛППП Высокий
lV Чаще в норме Повышен ЛПОНП Умеренный
V Повышен Повышен Хиломикроны и ЛПОНП Низкий

Диагностика

Для оценки липидного профиля в биохимическом анализе крови наши специалисты определяют общий холестерин, триглицериды, ЛПВП, ЛПНП.

У больных ИБС (а также периферическим атеросклерозом, атеросклерозом сонных артерий, аневризмой брюшного отдела аорты, сахарным диабетом) холестерин должен быть < 4,5 ммоль/л (175 мг/дл), а ЛПНП < 2,6 ммоль/л (100 мг/дл). ЛПВП у мужчин должен быть равен или больше 1,0 ммоль/л (40 мг/дл), у женщин — 1,2 ммоль/л (46 мг/дл). Триглицериды не должны превышать 1,77 ммоль/л (155 мг/дл). Нормальным уровнем Лп(а) в крови человека считается концентрация < 30мг/дл.

Лечение нарушений липидного обмена

Немедикаментозная терапия предусматривает назначение диеты, коррекцию веса, повышение физической активности, прекращение курения.

Медикаментозная терапия в клинике «Клиника К+31» представлена следующими классами лекарственных средств:

  • статины;
  • никотиновая кислота и ее производные;
  • фибраты;
  • секвестранты желчных кислот;
  • антиоксиданты.
Читайте также:  От холестерина могут быть отеки лица

Для назначения адекватной терапии необходимо тщательное обследование, а также динамическое наблюдение у специалиста.

Экстракорпоральные методы лечения

В случаях, когда гиполипидемическая лекарственная терапия недостаточно эффективна и/или не может быть применена, встает вопрос об использовании инвазивных способов коррекции нарушений липидного обмена. К ним относятся методы терапевтического афереза: плазмаферез и ЛПНП аферез. ЛПНП аферез — это совокупность экстракорпоральных способов лечения: каскадная плазмофильтрация, осаждение гепарином, плазмо- и гемосорбция на ионообменных или иммунных сорбентах. ЛПНП аферез показан больным гомозиготной и тяжелыми гетерозиготными формами наследственной ГЛП IIа типа, больным, резистентным к лекарственной гиполипидемической терапии, а также пациентам с тяжелой ГЛП, перенесшим операцию реваскуляризации миокарда или ангиопластику с целью предотвращения образования рестенозов, связанных с повторным образованием липидных бляшек.

Все возможные методы лечения гиперхолестеринемии доступны в медицинском центре «Клиника К+31».

Источник

ХОЛЕСТЕРИНОВЫЙ ОБМЕН

ХОЛЕСТЕРИНОВЫЙ ОБМЕН (греческий chole желчь + stereos твердый) — совокупность реакций биосинтеза холестерина (см.) и его распада в организме человека и животных. В организме человека за сутки около 500 мг холестерина окисляется в желчные кислоты, примерно такое же количество стеринов экскретируется с фекалиями, около 100 мг выделяется с кожным салом, небольшое количество холестерина (около 40 мг) используется для образования кортикоидных и половых гормонов, а также витамина D3, 1—2 мг холестерина выводится с мочой. У кормящих женщин с грудным молоком выделяется 100— 200 мг холестерина в сутки. Эти потери восполняются за счет синтеза холестерина в организме (у взрослого человека в сутки около 700—1000 мг) и поступления его с пищей (300— 500 мг). Холестерин, а также часть холестерина, поступившего в просвет кишечника с желчью, всасывается в тонкой кишке в форме жировых мицелл (см. Жировой обмен). Эфиры холестерина предварительно гидролизуются при действии холестеринэстеразы (см.) панкреатического и кишечного соков. В стенке тонкой кишки холестерин используется для образования хиломикронов (см. Липопротеиды), в составе которых он поступает сначала в лимфатическую систему, а затем в кровяное русло.

В капиллярах жировой и некоторых других тканей в результате воздействия на хиломикроны липопротеид-липазы образуются частицы, обогащенные эфирами холестерина и фосфолипидами, получившие название ремнантных (остаточных) частиц. Эти частицы задерживаются в печени, где подвергаются распаду. Освободившийся при этом холестерин наряду с холестерином, синтезированным в печени, образует так называемый общий пул печеночного холестерина, который используется по мере необходимости для образования липопротеидов (см.).

Установлено, что у человека и некоторых животных липопротеиды низкой плотности транспортируют холестерин в органы и ткани, причем захват липоиротеидных частиц клетками этих органов и тканей осуществляется при участии специфических рецепторов. Холестерин, доставленный в клетку в составе липопротеидных частиц, идет на покрытие потребностей клетки (образование мембран при делении клетки, синтез стероидных гормонов и др.). Избыточная часть неэтерифицированного (свободного) холестерина превращается в его эфиры при действии содержащегося в клетке фермента — холестеролацилтрансферазы (КФ 2.3.1.26). Обратный транспорт неэтерифицированного холестерина из различных органов и тканей в печень осуществляется липопротеидами высокой плотности, причем в кровяном русле происходит этерификация захваченного холестерина при участии лецитина и фермента холестерин-лецитин — ацилтрансферазы (КФ 2.3.1.43). Доставленный таким путем в печень холестерин идет на образование желчных кислот (см.).

Синтез холестерина

Общая схема биосинтеза холестерина

Общая схема биосинтеза холестерина

Синтез холестерина осуществляется в клетках почти всех органов и тканей, однако в значительных количествах он образуется в печени (80%), стенке тонкой кишки (10%) и коже (5%). К. Блох, Ф. Линен и др. показали основные реакции биосинтеза холестерина (их не менее 30). Сложный процесс биосинтеза холестерина можно разделить на три стадии: 1) биосинтез мевалоновой кислоты; 2) образование сквалена из мевалоновой кислоты; 3) циклизация сквалена и образование холестерина (см. схему).

Считают, что главным источником образования мевалоновой кислоты в печени является ацетил-КоА, а в мышечной ткани — лейцин. И то и другое соединения в результате ряда энзиматических реакций образуют бета-гидрокси-бета-метилглутарил-КоА (ГМГ-КоА), который затем восстанавливается в мевалоновую кислоту. В последнее время показано, что в синтез мевалоновой кислоты в печени может включаться и малонил-КоА.

Реакцией, определяющей скорость биосинтеза холестерина в целом, является восстановление ГМГ-КоА в мевалоновую кислоту; этот процесс катализирует фермент НАДФ-Н2-зависимая ГМГ-КоА-редуктаза (КФ 1.1.1.34). Именно этот фермент подвержен воздействиям со стороны ряда факторов. Так, активность ГМГ-КоА-редуктазы повышается (или содержание ее в печени возрастает) и скорость синтеза холестерина в целом увеличивается при действии ионизирующего излучения, введении тиреоидных гормонов, поверхностно-активных веществ, холестирамина, а также при гипофизэктомии. Угнетение синтеза холестерина отмечается при голодании, тиреоидэктомии и при поступлении в организм пищевого холестерина. Последний угнетает активность (или синтез) фермента ГМГ-КоА-редуктазы.

Читайте также:  Заболевания вызывающие повышение холестерина

Синтез холестерина в стенке тонкой кишки регулируется исключительно концентрацией желчных кислот. Так, отсутствие их в кишечнике при наличии наружного желчного свища ведет к повышению синтеза холестерина в тонкой кишке в 5—10 раз.

На второй стадии синтеза происходит фосфорилирование мевалоновой кислоты при участии АТФ и образование нескольких фосфорилированные промежуточных продуктов (см. Фосфорилирование). При декарбоксилировании одного из них образуется изопентенил-пирофосфат, часть которого превращается в диметилаллил-пирофосфат. Взаимодействие этих двух соединений приводит к образованию димера — геранил-пирофосфата, содержащего 10 атомов углерода. Геранил-пирофосфат конденсируется с новой молекулой изопентенил-пирофосфата и образует тример — фарнезил-пирофосфат, содержащий 15 атомов углерода. Эта реакция идет с отщеплением молекулы пирофосфата. Затем две молекулы фарнезил-пирофосфата конденсируются, теряя каждая свой пирофосфат, и образуют гексамер сквален, содержащий 30 атомов углерода.

Третья стадия синтеза включает окислительную циклизацию сквалена, сопровождающуюся миграцией двойных связей и образованием первого циклического соединения — ланостерина. Ланостерин уже имеет гидроксильную группу в положении 3 и три лишние (по сравнению с холестерином) метильные группы. Дальнейшее превращение ланосте-рина может совершаться двумя путями, причем и в том и в другом случае промежуточными продуктами являются соединения стериновой природы. Более доказанным считается путь через 24, 25-дигидроланостерин и ряд других стеринов, включая 7-дигидрохолестерин, служащий непосредственным предшественником холестерина. Другой возможный путь — превращение ланостерина в зимостерин, а затем в десмостерин, из которого при восстановлении образуется холестерин.

Если суммировать общий итог всех реакций биосинтеза холестерина, то он может быть представлен в следующем виде:

18CH3CO-S-KoA + 10(H+) + 1/2O2 —> C27H46O + 9CO2 + 18KoA-SH. Источником углерода холестерина является ацетил-КоА (им может быть также малонил-КоА и лейцин), источником водорода — вода и никотин-амида дениндинуклеотидфосфат, а источником кислорода — молекулярный кислород.

Начиная со сквалена и кончая холестерином все промежуточные продукты биосинтеза нерастворимы в водной среде, поэтому они участвуют в конечных реакциях биосинтеза холестерина в связанном со сквален или стеринпереносящими белками состоянии. Это позволяет им растворяться в цитоплазме клетки и создает условия для протекания соответствующих реакций. Холестерин-переносящий белок обеспечивает также перемещение стеринов внутри клетки, что имеет важное значение для вхождения его в мембрану клетки, а также для транспорта в клеточные системы, осуществляющие катаболизм холестерина.

Катаболизм холестерина протекает в печени (окисление его в желчные кислоты), в надпочечниках и плаценте (образование из холестерина стероидных гормонов), в тестикулярной ткани и яичниках (образование половых гормонов). При биосинтезе холестерина в коже на завершающей стадии образуется небольшое количество 7-дегидрохолестерина. Под влиянием УФ-лучей он превращается в витамин D3.

Своеобразные превращения претерпевает холестерин в толстой кишке. Речь идет о той части пищевого холестерина или холестерина, поступившего в кишечник с желчью, которая не подверглась всасыванию. Под влиянием микробной флоры толстой кишки происходит восстановление холестерина и образование так наз. нейтральных стеринов. Главным их представителем является копростерин. Экспериментальные исследования, проведенные с использованием радиоизотопных и других методов, показали, что скорость обновления холестерина в различных органах и тканях неодинакова; наиболее высока она в надпочечниках и печени и чрезвычайно низка в мозге взрослых животных.

Патология холестеринового обмена

Нарушения холестеринового обмена обычно связаны с дисбалансом между количеством синтезируемого в организме и поступающего с пищей холестерина, с одной стороны, и количеством холестерина, подвергающегося катаболизму,— с другой. Эти нарушения проявляются в изменении уровня холестерина в плазме крови, которые классифицируются как гиперхолестеринемия или гипохолестеринемия (для взрослого населения высокоразвитых стран величины выше 270 мг/100 мл и ниже 150 мг/100 мл соответственно).

Гиперхолестеринемия может быть первичной (наследственной или алиментарной) и вторичной, обусловленной различными заболеваниями. Наследственная (семейная) гиперхолестеринемия характеризуется высоким уровнем холестерина и липопротеидов низкой плотности (ЛПНГЛ в плазме крови. При гомозиготной гиперхолестеринемии уровень холестеринемии может достигать 700— 800 мг/100 мл, а при гетерозиготной — 300—500 мг/100 мл. В основе наследственной гиперхолестеринемии лежит генетически обусловленное отсутствие (у гомозигот) или недостаток (у гетерозигот) специфических рецепторов к липопротеидам низкой плотности у клеток, вследствие чего резко снижается захват и последующий катаболизм этих богатых холестерином липопротеидов клетками паренхиматозных органов и тканей. В результате пониженного захвата и снижения катаболизма липопротеидов низкой плотности развивается гиперхолестеринемия (см.). Последняя приводит к раннему развитию атеросклероза (см.) и его клинических проявлений — ишемической болезни сердца (см.), преходящей ишемии мозга (см. Инсульт) и др. Особенно тяжело протекает атеросклероз при гомозиготной форме; у таких больных часто наблюдается ксантоматоз (см.), липоидная дуга роговицы (отложение холестерина в роговицу глаз), инфаркт миокарда в юношеском возрасте.

Читайте также:  Применение льняного масла при холестерине

Распространенность гомозиготной формы гиперхолестеринемии невелика (примерно один случай на 1 млн. жителей). Чаще встречается гетерозиготная форма — один случай на 500 жителей.

Алиментарная гиперхолестеринемия характеризуется повышенным уровнем холестерина в плазме крови вследствие длительного потребления больших количеств пищи, богатой холестерином (куриные желтки, икра, печень, животные жиры и др.). Алиментарная гиперхолестеринемия той или иной степени выраженности характерна для жителей высокоразвитых индустриальных стран. Согласно популяционным исследованиям имеется прямая зависимость между уровнем холестерина в крови и распространенностью ишемической болезни сердца.

В эксперименте на различных животных (кролики, морские свинки, обезьяны) показано, что введение массивных доз холестерина с пищей приводит к резко выраженной гиперхолестеринемии и быстрому развитию атеросклероза. Экспериментальные модели гиперхолестеринемии и атеросклероза, впервые предложенные H. Н. Аничковым и С. С. Халатовым (1913), широко используются в научных исследованиях.

Вторичная гиперхолестеринемия встречается при гипотиреозе (см.), сахарном диабете (см. Диабет сахарный), нефротическом синдроме (см.), подагре (см.) и др. и нередко сопровождается развитием атеросклероза (см. Гиперхолестеринемия).

Выделяют первичную и вторичную гипохолестеринемию. Первичная гипохолестеринемия характерна для наследственного заболевания — абеталипопротеинемии (см.). При этой болезни отмечается почти полное отсутствие в плазме крови липопротеидов низкой плотности (у гомозигот) или значительное их снижение (у гетерозигот). Уровень общего холестерина не превышает 75 мг/ 100 мл. Гомозиготная форма болезни протекает исключительно тяжело. В основе абеталипопротеинемии лежит генетически обусловленное нарушение синтеза апопротеина В — главного белка липопротеидов низкой плотности.

Вторичные гипохолестеринемии наблюдаются при кахексии, гипертиреоидизме, аддисоновой болезни и паренхиматозных заболеваниях печени, при ряде инфекционных болезней и интоксикациях (см. Гипохолестеринемия). При недостаточной активности в плазме крови фермента лецитин — холестерин -ацилтрансферазы, или ЛХАТ (наследственная ЛXАТ-недостаточность), ответственного за этерификацию холестерина плазмы, наблюдается накопление неэтерифицированного холестерина в мембранах эритроцитов и клетках почек, печени, селезенки, костного мозга, роговицы глаза. Резко снижается доля этерифицированного холестерина в плазме крови и одновременно повышается уровень неэтерифицированного холестерина и лецитина. У больных с наследственной ЛXAT-недостаточностыо стенки артерий и капилляров подвержены деструктивным изменениям, что связано с отложением в них липидов. Наиболее тяжелые изменения происходят в сосудах почечных клубочков, что приводит к развитию почечной недостаточности (см.).

Одним из распространенных нарушений холестериновый обмен. является образование желчных камней, основной составной частью которых является холестерин (см. Желчнокаменная болезнь). Образование желчных камней происходит вследствие выкристаллизовывания холестерина при относительно высокой его концентрации в желчи и относительно низкой концентрации в ней желчных кислот и фосфолипидов, обладающих способностью растворять холестерин. Исследования показали, что имеется прямая связь между уровнем холестерина в плазме крови и распространенностью холестероза (см.) и желчнокаменной болезни.

Библиогр.: Климов А. Н, и Н икульчева Н. Г. Липопротеиды, дислипопротеидемии и атеросклероз, Л., 1984; Полякова Э. Д. Пути биосинтеза холестерина в печени и их регуляция, в кн.: Липиды, структура,биосинтез, превращения и функции, под ред. С. Е. Северина, с. 131, М., 1977;она же, Регуляция содержания холестерина в клетке, в кн.: Биохимия липидов и их роль в обмене веществ, под ред.С. Е. Северина, с. 120, М., 1981; Финагин Л. К. Обмен холестерина и его регуляция, Киев, 1980; Lipids and lipidoses, ed. by G. Schettler, B.— Heidelberg, 1967; Sodhi H. S., Kudchod-k a r B. J. a. Mason D. T. Clinical methods in study of cholesterol metabolism, Basel a. o., 1979.

Источник