Угарный газ образует прочное соединение с гемоглобином
Содержание статьи
Как угарный газ действует на организм человека
Угарный газ вместе с вдыхаемым воздухом попадает в легкие, откуда проникает в кровь. В крови угарный газ взаимодействует с гемоглобином – белком, который доставляет кислород ко всем тканям организма. В состав каждой молекулы гемоглобина входит атом железа, который и присоединяет к себе молекулу кислорода, образуя в результате оксигемоглобин. Связь атома железа с молекулой кислорода является обратимой. Вокруг атома железа расположены четыре гема-порфириновых кольца. Наличие гемоглобина позволяет крови переносить в 70 раз больше кислорода, чем это сделал бы простой солевой раствор.
Угарный газ замещает собой молекулу кислорода, в результате вместо оксигемоглобина образуется карбоксигемоглобин, который уже не способен выполнять задачу переноса кислорода.
Опасность угарного газа заключается в том, что он быстрее вступает в реакцию с гемоглобином, чем кислород, а карбоксигемоглобин является более прочным соединением, чем оксигемоглобин. Концентрация карбоксигемоглобина постепенно увеличивается в организме, а так как диссоциация его осуществляется замедленными темпами, то опасным является даже воздействие небольшой концентрации углекислого газа в воздухе в течение длительного времени. Проявления острой кислородной недостаточности могут начаться уже при концентрации СО в воздухе в 0,07%.
Когда содержание карбоксигемоглобина в крови превышает 20%, наблюдаются видимые признаки отравления угарным газом. При содержании карбоксигемоглобина в 30% может ощущаться головокружение, нарушения зрения, слабость в ногах, при концентрации в 40-50% наблюдаются помрачения сознания, а концентрация 69-70% является для человека смертельной. Опасное содержание карбоксигемоглобина в крови накапливается тем быстрее, чем выше концентрация СО во вдыхаемом воздухе. Чтобы представить себе, о чем идет речь, можно сказать, что концентрация карбоксигемоглобина в 40% может быть достигнута за 3 часа пребывания в помещении, содержание углекислого газа в воздухе которого составляет 0,1%. Если человек не находится в состоянии покоя, а занят активной деятельностью, это время сокращается.
Постоянное воздействие незначительного количества угарного газа не имеет выраженных последствий, однако присутствие карбоксигемоглобина в крови приводит к ухудшению самочувствия. Человек может жаловаться на постоянную головную боль, снижение аппетита, бессонницу, раздражительность, вялость, боли в области сердца, нарушения внимания и памяти. Подобные симптомы неоднократно отмечают у себя жители больших городов.
Недостаточное получение кислорода тканями организма, которое продолжается в течение длительного периода времени, может иметь тяжелые последствия для сердечно-сосудистой системы и головного мозга. Даже при излечении выраженных симптомов кислородной недостаточности может наблюдаться нарушение деятельности коры головного мозга, а в 70% случаев после отравления угарным газом появляются психические нарушения и изменения личности.
Безопасная эксплуатация печей
В общем, хорошего от этого газа ждать не следует. Отсюда вывод: предосторожность и предусмотрительность прежде всего. Поэтому не пренебрегайте правилами установки и эксплуатации печей, каминов, других приборов, обеспечивающих сгорание какого-либо топлива.
Источник
травление угарным газом. Карбоксигемоглобинемия
Отравление угарным газом. КарбоксигемоглобинемияКлассическим примером повреждающего действия на кровь с нарушением ее дыхательной функции, обусловленным инактивацией кровяного пигмента — гемоглобина, служит образование карбоксигемоглобина (НbСО) под влиянием оксида углерода. Превращение гемоглобина в НbСО приводит к изменению спектральных характеристик крови, что легло в основу количественного определения его в крови. НbСО образуется в результате взаимодействия оксида углерода (СО) с железом гемоглобина, что лишает его способности к оксигенации, приводит к нарушению транспортной функции и как результат вызывает развитие гемической гипоксии. Появление НbСО служит следствием поступления СО в легкие с вдыхаемым воздухом. Образование НbСО начинается с периферии эритроцитов уже в легочных капиллярах. В дальнейшем с увеличением содержания СО во вдыхаемом воздухе НbСО образуется не только в периферических отделах эритроцита, но и в центральных его отделах. Причем скорость образования НbСО прямо пропорциональна величине концентрации СО во вдыхаемом воздухе, а максимум его в крови определяется временем контакта. Способность гемоглобина связывать 02 и СО одинакова при условии, что 1 г гемоглобина может связывать 1,33—1,34 мл 02. Эта зависимость носит название константы Хюфнера. Вместе с тем сродство гемоглобина к СО в 250—300 раз больше, чем к 02. Примечательно, что оболочка эритроцитов служит своего рода защитным барьером при образовании НbСО, так как во взвеси эритроцитов этого деривата гемоглобина образуется на 20 % меньше, чем в растворе гемоглобина. Валентность железа в НbСО остается неизмененной, происходит лишь перестройка связей Fe2+. Все непарные электроны участвуют в образовании НbСО. Параллельно с образованием связей между СО и Fe2+ изменяется характер связи железа с глобином и порфирином. Она теряет свой ионный характер и превращается в ковалентную. Взаимодействие СО с Нb02 выражается взаимно сопряженными реакциями. нbо2 + со -> нbсо + о2 Скорость этих реакций и образование НЬСО определяются парциальным давлением СО и О2 в воздухе. При этом количество образовавшегося НbCO мо пропорционально давлению СО в окружающей среде и обратно пропорционально давлению 02. Несмотря на высокое, как указывалось выше, сродство СО к гемоглобину, ассоциация его с гемоглобином происходит в 10 раз медленнее, чем таковая с 02. Однако при этом диссоциация HbСО протекает в 3600 раз медленнее, чем диссоциация Нb02. По этой причине HbCO очень быстро накапливается в крови даже при сравнительно небольшом содержании СО во вдыхаемом воздухе. Таким образом, помимо выключения части гемоглобина из транспорта кислорода, еще одним патогенетически важным звеном в нарушении дыхательной функции крови на фоне карбоксигемоглобинемии служит замедление диссоциации оксигемоглобина под влиянием НЬСО, что известно под названием эффекта Холдена. Так в физиологических условиях повышение концентрации С02 в крови способствует ускоренному отщеплению 02 от НЬ02, при наличии НЬСО этот сбалансированный процесс нарушается. Принято считать, что суть эффекта Холдена заключается в том, что при взаимодействии СО с гемоглобином поступивший в кровь СО соединяется только с 3 из 4 атомов железа в молекуле гемоглобина, тогда как с 4-м атомом железа соединяется 02, сродство которого к этому атому железа резко возрастает, что, естественно, затрудняет диссоциацию оксигемоглобина. Еще одним причинным фактором угнетения диссоциации Нb02 под влиянием СО служит снижение уровня промежуточного метаболита 2,3-дифосфоглицерата, который образуется в процессе реакции гликолиза. 2,3-Дифосфоглицерат обладает способностью усиливать процесс диссоциации НbСО за счет вызываемых им конформационных изменений гемоглобина, поэтому естественно, что дефицит этого метаболита косвенно тормозит высвобождение 02 из Нb02. Итак, основным пусковым механизмом развития специфической гемической гипоксии при отравлении СО является образование НbСО, который утрачивает способность переносить кислород в сочетании с угнетающим влиянием на процесс диссоциации Нb02. Неопровержимое доказательство того, что первопричиной развития СО-интоксикации является карбоксиге-моглобинемия, — прямая зависимость между уровнем НbСО в крови и тяжестью интоксикации. Так, по данным V.E.Henderson, при содержании НbСО в крови, равном 10 %, отмечена лишь одышка при физическом напряжении, при 40—50 % НbСО появляются явные признаки интоксикации: головная боль, помрачение сознания вплоть до его потери, концентрация НbСО в крови свыше 60 % ведет к летальному исходу. Во всяком случае у людей, впадающих в коматозное состояние или погибающих от острого отравления СО, содержание НbСО, как правило, не менее 50 %. Однако не всегда прослеживается прямая связь между содержанием в крови НbСО и тяжестью отравления. Известны случаи, когда тяжелая форма отравления развивалась уже при 20 % НbСО и, наоборот, при 60 % НbСО встречаются легкие формы отравления. Во многом это объясняется достаточно большой индивидуальной чувствительностью к СО, которую связывают с генетическим фактором. — Также рекомендуем «Диагностика карбоксигемоглобинемии. Изменения красной крови при карбоксигемоглобинемии» Оглавление темы «Алкилирующие яды. Отравление угарным газом»: |
Источник
Связывание гемоглобина с оксидом углерода
Оксид углерода (угарный газ, СО) обладает гораздо большим сродством к гемоглобину, чем кислород. Даже при крайне низких парциальных давлениях СО гемоглобин превращается в карбоксигемоглобин: Нb+СО Þ НbСО. Равновесие этой реакции значительно смещено вправо, поэтому кривая диссоциации карбоксигемоглобина имеет очень крутой наклон. Высокое сродство оксида углерода к гемоглобину обусловлено тем, что СО диссоциирует от НЬ гораздо медленнее, чем О2. Максимально эффективная концентрация для СО составляет 30 частей на миллион, что соответствует 0,003 объемных %. В артериальной крови человека, пребывающего достаточно долго в среде с таким содержанием СО, на долю НЬСО приходится около 5% общего содержания гемоглобина. Парциальные давления СО и О2, при которых содержание соответственно НbСО и НbО2 составляет по 5%, соотносятся как 1:350. Иными словами, в данных пределах парциальных давлений сродство Нb к СО примерно в 35O раз выше, чем к О2.
Токсичность оксида углерода обусловлена именно высоким сродством этого соединения к гемоглобину. СО представляет собой газ без цвета и запаха, образующийся при неполном сгорании органических веществ. Иногда он входит в состав бытового газа; кроме того, он выделяется при работе двигателей внутреннего сгорания. Даже при низких концентрациях СО вытесняет кислород из соединения с гемоглобином, при этом последний теряет способность к переносу О2. В норме на долю НbСО приходится лишь 1% общего количества гемоглобина в крови; у курильщиков же к вечеру она достигает 20%. Об опасности, которую угарный газ представляет для автомобилистов, говорит тот факт, что на дорогах с особенно интенсивным движением содержание СО в воздухе достигает 3-10 ч. При такой концентрации СО шахтерам положено надевать дыхательные аппараты.
Токсичность угарного газа обусловлена не только блокированием гемоглобина, но и другим эффектом. Когда часть гемоглобина превращается в НbСО, кривая диссоциации оксигемоглобина (для гемоглобина, еще не блокированного СО) сдвигается влево и может в итоге приобретать форму гиперболы. В результате происходит еще большее снижение напряжения О2 в тканевых капиллярах.
При тяжелом отравлении угарным газом, отличительным признаком которого служит вишнево-красная окраска крови, жизнь пострадавшего можно спасти путем немедленного применения искусственного дыхания, по возможности с чистым кислородом. При этом напряжение кислорода в крови увеличивается, и О2 частично вытесняет СО из связи с гемоглобином. Рекомендуется также переливание большого количества крови, так как при этом в кровь пострадавшего поступает гемоглобин, способный переносить кислород.
Перенос СО2 кровью. Формы транспорта СО2.
Диоксид углерода (СО2, углекислый газ) ― конечный продукт окислительного метаболизма в клетках ― переносится с кровью к легким и удаляется через них во внешнюю среду. Подобно кислороду, диоксид углерода может переноситься как в физически растворенном виде, так и в составе химических соединений. Химическое связывание СО2 ―более сложный процесс по сравнению со связыванием кислорода. Это обусловлено тем, что механизм, отвечающий за транспорт СО2, должен одновременно обеспечивать поддержание постоянства кислотно-щелочного равновесия крови и тем самым внутренней среды организма в целом.
Связывание СО2. Напряжение СО2 в артериальной крови, поступающей в тканевые капилляры, составляет 40 мм рт.ст. (5,3 кПа). В клетках же, расположенных около этих капилляров, напряжение СО2 значительно выше, так как углекислый газ постоянно образуется в процессе метаболизма. В связи с этим физически растворенный СО2 диффундирует по градиенту напряжения из тканей в капилляры. Здесь некоторое количество углекислого газа остается в растворенном состоянии, но большая часть СО2 претерпевает ряд химических превращений. Прежде всего, происходит гидратация молекул СО2 с образованием угольной кислоты, сразу же диссоциирующей на ион бикарбоната и протон:
В плазме крови эта реакция протекает очень медленно; в эритроците же она ускорена примерно в 10 тыс. раз. Это связано с действием фермента карбоангидразы. Поскольку этот фермент присутствует только в эритроцитах, практически все молекулы СО2, участвующие в реакции гидратации, должны сначала проникнуть в эритроциты.
Роль разных форм СО2 в газообмене. В крови, поступающей к тканям, напряжение СО2 составляет 40 мм рт.ст. Проходя через них, кровь насыщается углекислым газом, и напряжение его в оттекающей из тканей крови достигает в среднем 46 мм рт.ст. При этом 1 л крови поглощает примерно 1,8 ммоль СО2. Около 12% этого количества остается в физически растворенном виде или в форме недиссоциированной угольной кислоты, 11% образует карбаминовое соединение с гемоглобином, 27% транспортируется в виде бикарбоната в эритроцитах, а остальное количество ― около 50% ― растворено в виде НСО3¯ в плазме. При прохождении крови через легкие СО2 высвобождается из этих четырех форм в таком же соотношении.
Сатурационные кривые СО2
Зависимость содержания СО2 от его напряжения. Общее содержание диоксида углерода в крови складывается из концентраций физически растворенного и форм химически связанного СО2 ― угольной кислоты, карбамата и бикарбоната. Большая часть СО2 присутствует внутри и вне эритроцитов в форме бикарбоната. При повышении РСО2 содержание всех этих форм СО2 увеличивается.
Связь между концентрацией в крови и парциальным давлением СО2 описывается сатурационной кривой, сходной с кривой диссоциации оксигемоглобина. Зависимость связывания СО2 от степени оксигенации гемоглобина называют эффектом Христиансена-Дугласа-Холдена «или кратко эффектом Холдена.
Существует принципиальная разница между сатурационными кривыми связывания СО2 и кривыми диссоциации оксигемоглобина. Кривые диссоциации НbО2 асимптотически приближаются к максимуму, а связывание СО2 не достигает насыщения. По мере увеличения парциального давления СО2 количество связанного СО2 постоянно возрастает, так как образование бикарбоната в крови практически не лимитировано.
Физиологическое значение эффекта Христиансена-Дугласа-Холдена. При рассмотрении процессов поступления СО2 в кровь из тканей и его высвобождения в легких следует помнить о том, что эти процессы происходят одновременно с обменом О2. Изменения в насыщении гемоглобина кислородом влияют на связывание СО2 кровью и тем самым на его обмен.
К тканевым капиллярам обычно притекает полностью оксигенированная кровь. По мере того как кровь проходит через капилляры и кислород выходит из нее в ткани, способность крови поглощать СО2 увеличивается. Таким образом, эффект Христиансена-Дугласа-Холдена способствует поглощению СО2 кровью в тканях. В легких происходят обратные процессы. В результате того, что в кровь поступает кислород, ее сродство к углекислому газу снижается, и тем самым облегчается диффузия СО2 в альвеолы. Итак, мы убедились в том, что как при поступлении СО2 в кровь из тканей, так и при выделении его в легких эффект Христиансена-Дугласа-Холдена способствует диффузионному обмену этого газа.
Источник
Гемоглобин и его соединения. Нормальная физиология
Гемоглобин и его соединения
Гемоглобин – особый белок хромопротеида, благодаря которому эритроциты выполняют дыхательную функцию и поддерживают рН крови. У мужчин в крови содержится в среднем 130–160 г/л гемоглобина, у женщин – 120–150 г/л.
Гемоглобин состоит из белка глобина и 4 молекул гема. Гем имеет в своем составе атом железа, способный присоединять или отдавать молекулу кислорода. При этом валентность железа, к которому присоединяется кислород, не изменяется, т. е. железо остается двухвалентным. Гемоглобин, присоединивший к себе кислород, превращается в оксигемоглобин. Это соединение непрочное. В виде оксигемоглобина переносится большая часть кислорода. Гемоглобин, отдавший кислород, называется восстановленным, или дезоксигемоглобином. Гемоглобин, соединенный с углекислым газом, носит название карбгемоглобина. Это соединение также легко распадается. В виде карбгемоглобина переносится 20% углекислого газа.
В особых условиях гемоглобин может вступать в соединение и с другими газами. Соединение гемоглобина с угарным газом (СО) называется карбоксигемоглобином. Карбоксигемоглобин является прочным соединением. Гемоглобин блокирован в нем угарным газом и неспособен осуществлять перенос кислорода. Сродство гемоглобина к угарному газу выше его сродства к кислороду, поэтому даже небольшое количество угарного газа в воздухе является опасным для жизни.
При некоторых патологических состояниях, например, при отравлении сильными окислителями (бертолетовой солью, перманганатом калия и др.) образуется прочное соединение гемоглобина с кислородом – метгемоглобин, в котором происходит окисление железа, и оно становится трехвалентным. В результате этого гемоглобин теряет способность отдавать кислород тканям, что может привести к гибели человека.
В скелетных и сердечной мышцах находится мышечный гемоглобин, называемый миоглобином. Он играет важную роль в снабжении кислородом работающих мышц.
Имеется несколько форм гемоглобина, отличающихся строением белковой части – глобина. У плода содержится гемоглобин F. В эритроцитах взрослого человека преобладает гемоглобин А (90%). Различия в строении белковой части определяют сродство гемоглобина к кислороду. У фетального гемоглобина оно намного больше, чем у гемоглобина А. Это помогает плоду не испытывать гипоксии при относительно низком парциальном напряжении кислорода в его крови.
Ряд заболеваний связан с появлением в крови патологических форм гемоглобина. Наиболее известной наследственной патологией гемоглобина является серповидноклеточная анемия. Форма эритроцитов напоминает серп. Отсутствие или замена нескольких аминокислот в молекуле глобина при этом заболевании приводит к существенному нарушению функции гемоглобина.
В клинических условиях принято вычислять степень насыщения эритроцитов гемоглобином. Это так называемый цветовой показатель. В норме он равен 1. Такие эритроциты называются нормохромными. При цветовом показателе более 1,1 эритроциты гиперхромные, менее 0,85 – гипохромные. Цветовой показатель важен для диагностики анемий различной этиологии.
Читайте также
Гемоглобин
Гемоглобин
Обычно исследуют капиллярную кровь, которую получают путем укола иглой-скарификатором в мякоть IV пальца левой руки (реже – мочки уха) или венозную кровь из локтевой вены (при работе на автоматических анализаторах).За идеальную норму принимают концентрацию
Гликолизированный гемоглобин
Гликолизированный гемоглобин
Гликолизированный гемоглобин (HbAlc) – используется как показатель риска развития осложнений сахарного диабета. В соответствии с рекомендациями ВОЗ этот тест признан оптимальным и необходимым для контроля за качеством лечения
Гемоглобин
Гемоглобин
Норма: не обнаруживается («ОТРИЦАТЕЛЬНО»).NB! Положительный результат отражает присутствие свободного гемоглобина или миоглобина в моче. Это результат внутрисосудистого, внутрипочечного, мочевого гемолиза эритроцитов с выходом гемоглобина или повреждения и
Гемоглобин
Гемоглобин
Снижение содержания гемоглобина говорит об анемии. Она может развиться в результате потери гемоглобина при кровотечениях, при заболеваниях крови, сопровождающихся разрушением эритроцитов. Низкий гемоглобин также возникает вследствие переливания
Гликозилированный гемоглобин
Гликозилированный гемоглобин
Это биохимический показатель крови, отражающий среднее содержание сахара в крови за длительный период времени (до 3 месяцев), в отличие от исследования глюкозы крови, которое дает представление об уровне глюкозы крови только на момент
Гемоглобин
Гемоглобин
Норма: не обнаруживается («ОТРИЦАТЕЛЬНО»).
NB! Положительный результат отражает присутствие свободного гемоглобина или миоглобина в моче. Это результат внутрисосудистого, внутрипочечного, мочевого гемолиза эритроцитов с выходом гемоглобина или повреждения и
«ГЕМОГЛОБИН»
«ГЕМОГЛОБИН»
Вымойте говяжью печень, нарежьте ее ломтиками и слегка обжарьте на масле, чтобы она оставалась полусырой. Затем положите на ломтик черного хлеба и посыпьте сверху тертым сыром. На сыр положите ломтик сала и плотно, штука к штуке, уложите поверх сала маслины,
ФОСФОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
ФОСФОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
Фосфорорганические соединения снижают активность холинэстеразы в организме, что способствует накоплению ацетилхолина. Самый распространенный из фосфорорганических пестицидов – тиофос – представляет собой прозрачную бесцветную
ХЛОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
ХЛОРОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ
Кроме желудочно-кишечного тракта, для хлорорганических пестицидов «входными воротами» служат дыхательные пути и слизистые оболочки. Большинство этих веществ являются жирорастворимыми, поэтому они могут накапливаться в жировой ткани
Гемоглобин
Гемоглобин
Гемоглобин (ИЬ) составляет 95% от белков эритроцита. Отсутствие ядра в эритроците предоставляет место для большего количества молекул гемоглобина. Это означает, что клетка может нести больше кислорода. Дело в том, что кислород очень плохо растворяется в плазме
Как увеличить гемоглобин
Как увеличить гемоглобин
Игнатьева Татьяна Во время беременности вы можете столкнуться и с так называемой «физиологической анемией», когда уровень гемоглобина опускается до 100 мг% (в норме для женщин 120–140 мг%). Это происходит из-за увеличения объёма крови, усиления
Фенольные соединения
Фенольные соединения
Эти вещества содержат ароматические кольца с гидроксильной группой, а также их функциональные производные. Фенольные соединения, в ароматическом кольце которых имеется более одной гидроксильной группы, называют полифенолами.Большинство
Скелет и его соединения
Скелет и его соединения
Скелет (от греч. skeleton – высохший, высушенный) – формообразующая конструкция тела – выполняет множество функций. Главными из них являются опора, защита, преодоление силы тяжести. Кости представляют собой систему рычагов, которые под влиянием
Источник