В эритроцитах человека или лягушки больше гемоглобина почему
Содержание статьи
Практическая работа № 6 Тема: Сравнение микроскопического строения крови человека и лягушки
Практическая работа № 6
Тема: Сравнение микроскопического строения крови человека и лягушки
Цель работы: сравнить эритроциты крови человека и лягушки и определить, чья кровь способна переносить больше кислорода.
Оборудование: фото крови человека и лягушки, презентация «Состав крови. Форменные элементы крови».
Ход работы:
1. Рассмотрите кровь человека и лягушки, обратите внимание на форму, относительную величину, количество эритроцитов.
2. Прочитайте необходимую информацию к лабораторной работе:
Потребность в кислороде в процессе эволюции животных возрастала, так как увеличивалась интенсивность обмена веществ. У животных менялись форма, размер и количество эритроцитов.
Большая поверхность эритроцитов обеспечивает их бóльшую способность к транспортировке кислорода.
У холоднокровных животных при небольшой потребности кислорода очень большие эритроциты, к примеру, у угревидной саламандры они видны простым глазом. Эритроциты человека в 3 раза меньше эритроцитов лягушки, но зато число их в 1 мм3 в 13 раз больше.
Замечено, что чем меньше млекопитающее, тем меньше и многочисленнее его эритроциты.
Очень малые эритроциты у высокогорных животных, где воздух разрежен и беден кислородом. При переселении человека в горы число эритроцитов постепенно увеличивается и сравнивается с числом эритроцитов в крови людей, которые живут в горах. В разреженной атмосфере скорость образования эритроцитов значительно увеличивается.
Немаловажное значение имеет форма эритроцитов для поглощения кислорода. У разных животных она различна — круглые, овальные, веретенообразные, а иногда дискообразные с отростками. У высших животных и человека зрелые эритроциты не имеют ядра.
Все организмы, начиная с низших растений и кончая человеком, способны связывать газы с помощью органических соединений, которые имеют атомы металлов. Только у растений эти соединения мягкие, а почти у всех животных — соединения железа. В состав молекулы гемоглобина входит железо. В среднем в 100 см3 крови содержится 50 мг железа, а во всей крови человека — 3 г. В одном эритроците 265 молекул гемоглобина. Отсутствие ядер в зрелых эритроцитах человека (молодые эритроциты ядра имеют, но они в дальнейшем исчезают) позволяет разместить больше молекул гемоглобина в эритроците.
Гемоглобин обладает способностью связывать большое количество кислорода. В легочных капиллярах кровь насыщается кислородом, а тканевых капиллярах происходит обратный процесс — отдача кислорода.
Ответьте на вопросы: ОТВЕТЫ:
1) Почему потребность в кислороде в процессе эволюции животных возрастала? _______________________________________________________________________________________
2) Во сколько раз количество эритроцитов у человека больше, чем у лягушки?
_______________________________________________________________________________________
3) Какой белок обладает способностью связывать большое количество кислорода? _______________________________________________________________________________________
3. Зарисуйте эритроциты человека. ЭРИТРОЦИТЫ ЧЕЛОВЕКА
4. Зарисуйте эритроциты лягушки. ЭРИТРОЦИТЫ ЛЯГУШКИ.
5. Найдите различия в строении эритроцитов крови человека и лягушки.
Сравнительная характеристика эритроцитов крови человека с эритроцитами лягушки
Признаки | Эритроциты человека | Эритроциты лягушки |
Количество (1мм3) | 5 млн. | 500 тыс. |
Диаметр клетки, мкм | 7-8 | 21-24 |
Размер (крупные/мелкие) | ||
Форма | ||
Окраска | ||
Наличие/отсутствие ядра |
6. Сделайте вывод из этого сравнения (раскройте преимущества, которые достигаются благодаря этим отличительным признакам). ВЫВОД: _______________________________________________________________________________________
Практическая работа № 6. ПРОВЕРКА.
Тема: Сравнение микроскопического строения крови человека и лягушки
2. Ответьте на вопросы: Ответы:
1) Почему потребность в кислороде в процессе эволюции животных возрастала?
(Потому что увеличивалась интенсивность обмена веществ.)
2) Во сколько раз количество эритроцитов у человека больше, чем у лягушки?
(У человека в 1 мм3 в 13 раз эритроцитов больше, чем в 1 мм3 лягушки.)
3) Какой белок обладает способностью связывать большое количество кислорода? (Гемоглобин.)
5. Найдите различия в строении эритроцитов крови человека и лягушки.
Сравнительная характеристика эритроцитов крови человека с эритроцитами лягушки
Признаки | Эритроциты человека | Эритроциты лягушки |
Количество (1мм3) | 5 млн. | 500 тыс. |
Диаметр клетки, мкм | 7-8 | 21-24 |
Размер клетки | Мелкие | Крупные |
Форма клетки | Круглые, двояковогнутые | Овальные, двояковыпуклые |
Окраска | Красные | Розовые |
Наличие или отсутствие ядра | Нет | Есть |
6. Вывод: Эритроциты человека, в отличие от эритроцитов лягушки, не имеют ядра и приобрели двояковогнутую форму. Двояковогнутая форма эритроцита человека увеличивает поверхность клетки, а место ядра в них заполняется гемоглобином, поэтому каждый эритроцит человека может захватывать больше кислорода, чем эритроциты лягушки. Эритроциты человека меньше по размерам, чем эритроциты лягушки, поэтому в крови человека в единице объема количество эритроцитов больше (в 1 мм3 5 млн.), чем в крови у лягушки. Исходя из особенностей строения эритроцитов и большого их количества в крови человека, следует, что кровь человека содержит больше кислорода, чем кровь лягушки. Дыхательная функция крови человека значительно эффективнее, чем у земноводных животных.
Источник
Лабораторная работа Сравнение крови человека и крови лягушк
Лабораторная работа
СРАВНЕНИЕ КРОВИ ЧЕЛОВЕКА И КРОВИ ЛЯГУШКИ
Цель лабораторной работы: изучить строение крови человека и лягушки,
провести сравнение, сделать выводы
Содержание лабораторной работы
— изучить особенности строения клеток крови человека и их функции в организме человека;
— изучить особенности строения клеток крови лягушки для определения того, чья кровь способна переносить больше кислорода.
Планируемые результаты
Обучающийся научится:
— описывать особенности строения клеток крови человека;
— описывать особенности строения клеток крови лягушки;
— сравнивать строение клеток крови человека и лягушки;
— на основе сравнения делать выводы о закономерностях строения и способности к газопереносу.
Оборудование и материалы: микроскопы, готовые окрашенные микропрепараты крови человека и лягушки, презентация по микропреператам крови человека и лягушки.
Инструктаж по технике безопасности
Во время работы оборудование и материалы располагайте на рабочем месте в порядке, указанном учителем или лаборантом.
Не держите на рабочем месте предметы, не требующиеся при выполнении задания.
Размещайте оборудование таким образом, чтобы исключить его падение или опрокидывание.
По окончании работы приведите в порядок свое рабочее место, сдайте оборудование и материалы, выданные в лотке.
Порядок выполнения работы:
1 часть — Теоретическая
Лейкоциты
Лейкоциты, или белые клетки крови, представляют собой бесцветные клетки, содержащие ядро и цитоплазму, размером от 8 до 20 мкм. Количество лейкоцитов в периферической крови взрослого человека колеблется в пределах 4 — 9 тыс в мм3. Увеличение количества лейкоцитов в крови называется лейкоцитозом, уменьшение — лейкопенией.
Классификация лейкоцитов:
По присутствию в цитоплазме специфических гранул. На основании этого признака все лейкоциты делят на две группы.
1. Гранулоциты (зернистые лейкоциты) — характеризуются наличием в их цитоплазме специфических гранул, обладающих разной окраской. Это позволяет разделить гранулоциты на:
— базофильные,
— эозинофильные,
— нейтрофильные.
Ядро обычно дольчатое (сегментированное), однако незрелые их формы имеют палочковидное ядро.
2. Агранулоциты (незернистые лейкоциты):
— лимфоциты,
— моноциты.
Их ядро как правило округлой или бобовидной формы.
Гранулоциты
Цитоплазма эозинофила окрашивается в голубой цвет с густой крупной ярко-оранжевой зернистостью. Число этих клеток в крови колеблется от 1 до 5% от общего числа лейкоцитов. Их главная задача — обезвреживать и уничтожать чужеродные белковые структуры и токсины. Также они принимают участие в механизмах саморегуляции и очистке кровяного русла от вредных веществ.
Малочисленные клетки среди лейкоцитов. Их процентное соотношение от общего числа составляет меньше 1%. Цитоплазма базофила также окрашивается в голубой цвет. Зернистость крупная, отличается колебаниями в оттенках окраски отдельных гранул (темно-синяя, синяя, фиолетово-красная), форме и количестве гранул. Базофилы являются производителями гепарина. Он замедляет свёртывание крови в местах воспалений. Также они продуцируют гистамин — вещество, расширяющее капиллярную сеть. Расширение капилляров обеспечивает рассасывание и заживление ран.
Составляют около 70% всех белых кровяных телец. Нейтрофильная зернистость розовато-фиолетовой окраски, чаще пылевидная, обильная, не всегда равномерно заполняет цитоплазму. На основании формы ядра нейтрофилы бывают: юными (не имеют ядер); палочкоядерными (ядро в форме палочки); сегментоядерными.
В норме юных нейтрофилов должно быть не больше 1%. Норма содержания палочкоядерных клеток составляет до 5%. Допустимое количество сегментоядерных нейтрофилов не должно превышать 70%.
Нейтрофилы осуществляют фагоцитоз — обнаруживают, захватывают и обезвреживают вредные вирусы и микроорганизмы.
Агранулоциты
Моноциты — самые крупные клетки крови человека (3-11%). Это разновидность незрелых лейкоцитов. Ядра у них большие, разной формы. Клетки образуются в костном мозге и созревают в течение нескольких стадий.
Моноциты проявляют самую большую фагоцитарную активность. Из костного мозга они выходят недозревшими, что дает им возможность растягиваться и поглощать даже равные по размеру чужеродные клетки. Два-три дня моноциты циркулируют в крови, а затем либо гибнут, либо оседают в органах и тканях и становятся макрофагами. Они движутся очень быстро, благодаря выростам-псевдоподиям.
Отвечают за иммунный ответ организма, защищая его от инородных вторжений (норма 25-40%). Место их образования и развития — костный мозг, которые дозрели до определённой стадии, отправляются с током крови в лимфатические узлы, тимус и селезёнку. Там они созревают до конца. Клетки, которые созрели в тимусе, называют Т-лимфоцитами. В-лимфоциты дозревают в лимфоузлах и селезёнке.
Т-лимфоциты защищают организм, участвуя в реакциях иммунитета. Они уничтожают вредные микроорганизмы и вирусы. При такой реакции врачи говорят о неспецифической резистентности — то есть, устойчивости к патогенным факторам. Основная задача В-лимфоцитов — выработка антител.
Эритроциты
Эритроциты в крови здорового человека имеют форму двояковогнутого диска. Поверхность диска в 1,7 раза больше, чем поверхность тела такого же объема, но сферической формы.
Газоперенос
2 часть — Практическая
1. Зарисуйте в тетради лейкоциты (гранулоциты и агранулоциты), найдите эти лейкоциты на фотографиях микропрепаратов крови (презентация).
2. Рассмотрите препарат крови человека, обратите внимание на форму, окраску, относительную величину и количество эритроцитов и лейкоцитов в препарате. Зарисуйте 3-4 эритроцита и 1 лейкоцит, обозначьте клетки и ядро лейкоцита.
3.Рассмотрите препарат крови лягушки, обратите внимание на форму, окраску, величину и количество эритроцитов и лейкоцитов в препарате. Зарисуйте 3-4 эритроцита и 1 лейкоцит, обозначьте клетки и ядро эритроцита и лейкоцита.
Микропрепарат крови лягушки и человека
3. Сравните эритроциты человека и лягушки: результаты наблюдений занесите в таблицу.
Сравнительная характеристика строения эритроцитов человека и лягушки.
Эритроциты
Диаметр клетки, мм
Форма клетки
Наличие ядра
Окраска цитоплазмы
Кол-во клеток в 1 мм3
Человек
7-8 мм
4,5-5,5 млн
Лягушка
21-24 мм
0,33 — 0,38 млн.
Сформулируйте вывод.
Для формулировки вывода ответьте на вопросы:
Препараты крови каких организмов вы изучали?
Почему кровь человека переносит в единицу времени больше кислорода, чем кровь лягушки?
В каком направлении шла эволюция эритроцитов у позвоночных животных?
Источники:
https://iammangageek.ru/obshivka/leikocity-pod-mikroskopom-leikocity-kartinka-kak-vyglyadit/
https://www.clinlab./Hemocytology/Cell-morphology-of-myelocytic-granulocytic-series-1
https://www.ayzdorov.ru/ttermini_obshii_analiz_krovi.php#part52
https://www.meds.ru/sections.php?op=viewarticle&artid=395
https://micromed.pro/articles/krovi-lyagushki-pod-mikroskopom.html
Источник
Возможна ли жизнь без гемоглобина?
В декабре 1927 года норвежский зоолог Дитлев Рустад в 1750 километрах от побережья Антарктиды обнаружил очень странную рыбу с прозрачным телом и молочно-белыми жабрами. Когда Рустад вскрыл рыбу, он обнаружил, что ее кровь была бесцветной, как стекло. Так в его дневнике появилась запись «бесцветная кровь»…
Зачем нужен гемоглобин?
Практически всем видам позвоночных животных для транспорта кислорода к тканям необходима специальная система доставки, поскольку молекулярный кислород плохо растворим в воде: в 1 л плазмы крови растворяется всего лишь 3,2 мл О2. Содержащийся в эритроцитах позвоночных белок гемоглобин (Hb, рис. 1) способен связать в 70 раз больше — 220 мл О2/л. Содержание Hb в крови человека варьирует в пределах 120-180 г/л, что вдвое выше, чем концентрация белков плазмы (50-80 г/л). Поэтому гемоглобин вносит наибольший вклад в поддержание рН-буферной емкости крови. По своей структуре гемоглобин взрослого человека (HbA) является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами около 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию.
Рисунок 1. Молекула гемоглобина. Гемоглобин является одним из наиболее хорошо изученных белков. Он был открыт немецким физиологом Отто Функе в 1851 году, а структуру этого белка описал австрийский молекулярный биолог Макс Перутц в 1959 году, за что тремя годами позднее получил Нобелевскую премию по химии [1].
Visual Science
Рисунок 2. Насыщение гемоглобина и миоглобина кислородом
Каждая субъединица гемоглобина несет группу гема с ионом двухвалентного железа в центре. При связывании O2 с атомом железа в геме (оксигенация Hb) и отщеплении O2 (дезоксигенация) степень окисления атома железа не меняется. Окисление Fe2+ до Fe3+ в геме носит случайный характер. Окисленная форма гемоглобина — метгемоглобин — не способна переносить O2. Доля метгемоглобина поддерживается ферментами на низком уровне и составляет 1-2% [2]. Центры связывания O2 на каждой из четырёх субъединиц действуют кооперативно: когда молекула O2 связывается с одним из них, у других возрастает сродство к кислороду (данное явление называют положительной кооперативностью) [3]. Вследствие этого кривая насыщения гемоглобина кислородом имеет ярко выраженный сигмоидальный характер (рис. 2, кривая 2).
Другой мышечный белок — миоглобин, являющийся эволюционным предшественником гемоглобина, — является мономером и содержит единственный центр связывания O2, из-за чего его кривая насыщения кислородом несигмоидальна (рис. 2, кривая 1). Сродство к кислороду у миоглобина примерно в 13 раз выше, чем у гемоглобина (50%-насыщение миоглобина O2 достигается уже при парциальном давлении кислорода в 1-2 мм рт. ст., в то время как для гемоглобина эта цифра равна 26 мм рт. ст.) [4]. Из-за этого гемоглобин способен эффективно отдавать кислород в тканях и является более эффективным переносчиком, чем миоглобин. Но из этого не следует, что миоглобин малоэффективный и плохо устроенный белок, поскольку он выполняет принципиально иную биологическую функцию — запасание кислорода и обеспечение им митохондрий. Данные адаптивные различия между миоглобином и гемоглобином появились в результате миллионов лет эволюции…
Прозрачные рыбы
В 1927 году экспедицией норвежских китобоев близ острова Буве во время очередной промысловой охоты была поднята на сушу невиданная рыба, практически бесцветная и, самое интересное, с прозрачной («стеклянной») кровью. Это был первый обнаруженный вид позвоночных, не содержащих белка гемоглобина. За счет поразительного сходства головы рыбы с головой крокодила, рыбу назвали крокодиловая белокровка (Chaenocephalus aceratus). Белокровки (Channichthyidae; рис. 3) или ледяные рыбы обитают в холодных водах возле Антарктиды и южного побережья Южной Америки. Температура воды в этих краях опускается аж до −1,9 °C (температура замерзания морской воды ниже, чем пресной), причем является довольно постоянной.
Рисунок 3. Некоторые представители белокровок. а — Chaenodraco wilsoni. б — Chaenocephalus aceratus. в — Champsocephalus gunnari. г — Cryodraco atkinsoni. Белокровки (Channichthyidae) — семейство из отряда Окунеобразные (Perciformes), в котором описано 16 видов. Данные рыбы питаются крилем, рачками и другими рыбами. Недавние исследования показали, что рацион этих рыб различается в зависимости от возраста. В целом, в рационе преобладает антарктический криль (Euphausia superba) и равноногие рачки (Themisto gaudichaudii). В рационе молодых особей преобладает Т. gaudichaudii и эвфаузииды (Thyanoessa sp.), а доля антарктического криля меньше. Ледяные рыбы достигают общей длины 25-75 см. Они являются пелагиальными представителями антарктических вод, обитают на глубине от 200 до 700 метров. Некоторые подвиды C. aceratus обнаруживаются в районе 1-2 тыс. метров. Белокровки — доминирующий вид в Антарктиде, полностью лишенный плавательного пузыря, в связи с чем многие виды этих рыб являются донными.
Очень немногие рыбы могут выжить в суровых условиях Антарктики. Ледяная рыба выживает за счет специального антифриза, присутствующего в крови и предотвращающего образование кристаллов льда в организме. Этот антифриз (AFGP, antifreeze glycoprotein) представляет собой гликопротеин, предположительно произошедший от панкреатической трипсиногеноподобной протеазы [9]. AFGP способен связываться с микроскопическими кристалликами льда и предотвращать их рост [10].
Ледяные рыбы имеют очень низкий уровень метаболизма и проводят большую часть времени практически неподвижно. Белокровки обитают в богатой кислородом воде и поглощают его непосредственно через кожу [11], потому что при пониженных температурах кровь, содержащая гемоглобин, становится очень вязкой, и выживание с такой кровью было бы весьма проблематично.
Отсутствие гемоглобина компенсируется модификацией сердечнососудистой системы. Все представители ледяных рыб имеют большее сердце, чем у других рыб такого же размера, а это увеличивает ударный объем, в несколько раз повышает общее количество циркулирующей крови и поднимает скорость кровотока. При низком артериальном давлении это достигается за счет снижения системного сопротивления потоку. Сочетание высокой пропускной способности сердечнососудистой системы, высокого содержания кислорода и относительно низких скоростей метаболизма ледяной рыбы позволяет обеспечить достаточное количество кислорода в тканях [12].
Гемоглобиновая потеря
Белокровки пережили потерю генов гемоглобина достаточно давно. Как показывает молекулярный анализ, почти у всех ледяных рыб одна мутация привела к потере гена, кодирующего β-цепь и часть α-цепи гемоглобина. Потеря способности к синтезу гемоглобина вызвала развитие компенсаторных изменений: увеличился объем сердца и общий объем крови (приблизительно в 3.5 раза по сравнению с костистыми рыбами аналогичного размера) [13-15]. Ученые, проанализировав ДНК представителей нототениевых рыб, пришли к выводу, что только у одного вида белокровок (Neopagetopsis iona) присутствуют гены гемоглобина, но они не являются функциональными [16].
Наряду с гемоглобином, у белокровок отсутствует и миоглобин, переносящий кислород в скелетных мышцах. При этом у десяти видов миоглобин сохранился только в сердечной мышце (в частности, в желудочке) [17], а у шести видов миоглобин был утрачен и там, причем механизм утраты гена у каждого вида индивидуален [18]. Общим механизмом подобной утраты является дупликация коротких (5-25-нуклеотидных) фрагментов, приводящая к сдвигу рамки считывания, преждевременной терминации транскрипции, появлению ложного сигнала полиаденилирования или нарушению связывания РНК-полимеразы с промоторной областью ДНК [19], [20].
Утрата гемоглобина первоначально должна была стать адаптацией к холоду: известно, что растворимость кислорода в холодной воде выше [21], а значит, потребность в гемоглобине, напротив, меньше. Отсутствие эритроцитов также снижает вязкость крови, что особенно критично в условиях экстремально низкой температуры. В процессе эволюции у белокровок произошли довольно радикальные изменения, компенсирующие утрату гемоглобина, включая вдвое большие энергозатраты по перекачке крови по сравнению с другими рыбами [22].
Ледяные рыбы произошли от малоподвижного донного предка. В холодных, хорошо перемешиваемых, богатых кислородом антарктических водах рыбы с низкой скоростью метаболизма могут выжить даже без гемоглобина. В середине третичного периода экологический кризис в Южном океане, вызванный похолоданием [23], привел к появлению обширных пустующих экологических ниш. Отсутствие конкуренции позволило мутантам, не имеющим гемоглобина, оставить после себя потомство, которое заселило пустые места обитания. У детенышей развились механизмы компенсации мутаций. В относительно изолированных фьордах образовались места обитания, которые колонизировали несколько особей, что привело к возникновению шести видов рыб, изолированных друг от друга и независимо потерявших гены глобинов [22].
Гистологически показано, что особенностью ледяных рыб является высокий объем митохондрий при сходном их количестве и высокое отношение липид/белок в митохондриальных мембранах в сравнении с близкородственными видами семейства нототениевых рыб (рис. 4). Интересно, что у белокровок, у которых отсутствует миоглобин в скелетной мускулатуре, но присутствует в сердечной, объем митохондрий в скелетных мышцах существенно выше, чем в миокарде. О молекулярных механизмах этого феномена известно довольно мало. Предположительно, это явление связанно с одним из ключевых белков-регуляторов биогенеза митохондрий PGC-1α [23].
Рисунок 4. Поперечный разрез миоцитов желудочков сердца (C. aceratus). Большие митохондрии (Mt) по периферии окружены миофибриллами (My).
Регулятором биогенеза мембран митохондрий у белокровок является оксид азота-II (NO) (рис. 5). По сравнению с другими рыбами, у белокровок наблюдается повышенное содержание этого сигнального агента в крови. В ответ на потерю гемоглобина и миоглобина в мышцах ледяных рыб увеличивается биосинтез фосфолипидов, причем, независимо от синтеза митохондриальных белков и репликации митохондриальной ДНК, это приводит к увеличению размера митохондрий. Молекула NO стимулирует образование PGC-1α, который регулирует репликацию митохондриальной ДНК. Но ничего не известно о том, как биосинтез митохондриальных фосфолипидов интегрирован в этот процесс у ледяных рыб; возможно, это индуцируется высоким уровнем NO (темная стрелка на рисунке) [18].
Рисунок 5. Процесс биогенеза митохондрий у ледяных рыб. Образование митохондрий включает в себя синтез митохондриальных белков (синие точки), фосфолипидов и репликацию митохондриального генома (зеленые кружки). В ответ на стимулы, такие как понижение температуры (или повышение физической нагрузки у млекопитающих) эти три компонента митохондриального биогенеза согласованно активируется, что приводит к увеличению плотности митохондрий.
Заключение
Безусловно, гемоглобин — жизненно важный белок, на котором основано дыхание большинства организмов. Эволюция гемоглобина происходила миллионы лет, но в специфических условиях Антарктики (холодная вода, обогащенная кислородом) адаптивные преимущества могут достигаться за счет эволюционной утраты гемоглобина (дезадаптация). Ледяные рыбы являются одной из ярких иллюстраций того, как гены, которые считаются абсолютно необходимыми для жизни позвоночных, в определенных условиях могут редуцироваться, обеспечивая выживание вида. Причудливы пути эволюции.
- Макс Перутц. «Наука и техника»;
- Кольман Я., Рём К.-Г., Вирт Ю. Наглядная биохимия. М.: «Мир», 2000. — 469 с.;
- Ленинджер А. Основы биохимии. М.: «Мир», 1985. — 369 с.;
- Проссер Л. Сравнительная физиология животных. М.: «Мир», 1977. — 574 с.;
- Tate R.C. Fishes. London: ed by order of the trustees of the British Museum, 1914;
- Tate R.C. Antarctic fishes of the Scottish National Antarctic expedition. Edinburg: Robert Grant & Son, Williams & Norgate, 1913;
- Champsocephalus gunnari. Encyclopedia of life;
- Википедия: Белокровные рыбы;
- Chi-Hing C. Cheng, Liangbiao Chen. (1999). Evolution of an antifreeze glycoprotein. Nature. 401, 443-444;
- J. A. Raymond, A. L. DeVries. (1977). Adsorption inhibition as a mechanism of freezing resistance in polar fishes.. Proceedings of the National Academy of Sciences. 74, 2589-2593;
- C.-H Christina Cheng, H William Detrich. (2007). Molecular ecophysiology of Antarctic notothenioid fishes. Philosophical Transactions of the Royal Society B: Biological Sciences. 362, 2215-2232;
- Karl-Hermann Kock. (2005). Antarctic icefishes (Channichthyidae): a unique family of fishes. A review, Part I. Polar Biol. 28, 862-895;
- Yuqiong Zhao, Manoja Ratnayake-Lecamwasam, Sandra K. Parker, Ennio Cocca, Laura Camardella, et. al.. (1998). The Major Adult α-Globin Gene of Antarctic Teleosts and Its Remnants in the Hemoglobinless Icefishes. J. Biol. Chem.. 273, 14745-14752;
- Guido di Prisco, Ennio Cocca, Sandra K Parker, H.William Detrich. (2002). Tracking the evolutionary loss of hemoglobin expression by the white-blooded Antarctic icefishes. Gene. 295, 185-191;
- Guido di Prisco, Joseph T. Eastman, Daniela Giordano, Elio Parisi, Cinzia Verde. (2007). Biogeography and adaptation of Notothenioid fish: Hemoglobin and globin-gene evolution. Gene. 398, 143-155;
- T. J. Near. (2006). A Genomic Fossil Reveals Key Steps in Hemoglobin Loss by the Antarctic Icefishes. Molecular Biology and Evolution. 23, 2008-2016;
- B. D. Sidell, M. E. Vayda, D. J. Small, T. J. Moylan, R. L. Londraville, et. al.. (1997). Variable expression of myoglobin among the hemoglobinless Antarctic icefishes. Proceedings of the National Academy of Sciences. 94, 3420-3424;
- K. M. O’Brien, I. A. Mueller. (2010). The Unique Mitochondrial Form and of Antarctic Channichthyid Icefishes. Integrative and Comparative Biology. 50, 993-1008;
- D. J. Small. (2003). The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription. Journal of Experimental Biology. 206, 131-139;
- B. D. Sidell. (2006). When bad things happen to good fish: the loss of hemoglobin and myoglobin expression in Antarctic icefishes. Journal of Experimental Biology. 209, 1791-1802;
- L. Bargelloni, S. Marcato, T. Patarnello. (1998). Antarctic fish hemoglobins: Evidence for adaptive evolution at subzero temperature. Proceedings of the National Academy of Sciences. 95, 8670-8675;
- Daniela Giordano, Ignacio Boron, Stefania Abbruzzetti, Wendy Van Leuven, Francesco P. Nicoletti, et. al.. (2012). Biophysical Characterisation of Neuroglobin of the Icefish, a Natural Knockout for Hemoglobin and Myoglobin. Comparison with Human Neuroglobin. PLoS ONE. 7, e44508;
- M. R. Urschel, K. M. O’Brien. (2008). High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. Journal of Experimental Biology. 211, 2638-2646;
- F. Garofalo, D. Pellegrino, D. Amelio, B. Tota. (2009). The Antarctic hemoglobinless icefish, fifty five years later: A unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 154, 10-28;
- S. Austin, J. St-Pierre. (2012). PGC1 and mitochondrial bolism — emerging concepts and relevance in ageing and neurodegenerative disorders. Journal of Cell Science. 125, 4963-4971.
Источник