Вещества снижающие синтез эндогенного холестерина

ХОЛЕСТЕРИНОВЫЙ ОБМЕН

ХОЛЕСТЕРИНОВЫЙ ОБМЕН (греческий chole желчь + stereos твердый) — совокупность реакций биосинтеза холестерина (см.) и его распада в организме человека и животных. В организме человека за сутки около 500 мг холестерина окисляется в желчные кислоты, примерно такое же количество стеринов экскретируется с фекалиями, около 100 мг выделяется с кожным салом, небольшое количество холестерина (около 40 мг) используется для образования кортикоидных и половых гормонов, а также витамина D3, 1-2 мг холестерина выводится с мочой. У кормящих женщин с грудным молоком выделяется 100- 200 мг холестерина в сутки. Эти потери восполняются за счет синтеза холестерина в организме (у взрослого человека в сутки около 700-1000 мг) и поступления его с пищей (300- 500 мг). Холестерин, а также часть холестерина, поступившего в просвет кишечника с желчью, всасывается в тонкой кишке в форме жировых мицелл (см. Жировой обмен). Эфиры холестерина предварительно гидролизуются при действии холестеринэстеразы (см.) панкреатического и кишечного соков. В стенке тонкой кишки холестерин используется для образования хиломикронов (см. Липопротеиды), в составе которых он поступает сначала в лимфатическую систему, а затем в кровяное русло.

В капиллярах жировой и некоторых других тканей в результате воздействия на хиломикроны липопротеид-липазы образуются частицы, обогащенные эфирами холестерина и фосфолипидами, получившие название ремнантных (остаточных) частиц. Эти частицы задерживаются в печени, где подвергаются распаду. Освободившийся при этом холестерин наряду с холестерином, синтезированным в печени, образует так называемый общий пул печеночного холестерина, который используется по мере необходимости для образования липопротеидов (см.).

Установлено, что у человека и некоторых животных липопротеиды низкой плотности транспортируют холестерин в органы и ткани, причем захват липоиротеидных частиц клетками этих органов и тканей осуществляется при участии специфических рецепторов. Холестерин, доставленный в клетку в составе липопротеидных частиц, идет на покрытие потребностей клетки (образование мембран при делении клетки, синтез стероидных гормонов и др.). Избыточная часть неэтерифицированного (свободного) холестерина превращается в его эфиры при действии содержащегося в клетке фермента — холестеролацилтрансферазы (КФ 2.3.1.26). Обратный транспорт неэтерифицированного холестерина из различных органов и тканей в печень осуществляется липопротеидами высокой плотности, причем в кровяном русле происходит этерификация захваченного холестерина при участии лецитина и фермента холестерин-лецитин — ацилтрансферазы (КФ 2.3.1.43). Доставленный таким путем в печень холестерин идет на образование желчных кислот (см.).

Синтез холестерина

Общая схема биосинтеза холестерина

Общая схема биосинтеза холестерина

Синтез холестерина осуществляется в клетках почти всех органов и тканей, однако в значительных количествах он образуется в печени (80%), стенке тонкой кишки (10%) и коже (5%). К. Блох, Ф. Линен и др. показали основные реакции биосинтеза холестерина (их не менее 30). Сложный процесс биосинтеза холестерина можно разделить на три стадии: 1) биосинтез мевалоновой кислоты; 2) образование сквалена из мевалоновой кислоты; 3) циклизация сквалена и образование холестерина (см. схему).

Считают, что главным источником образования мевалоновой кислоты в печени является ацетил-КоА, а в мышечной ткани — лейцин. И то и другое соединения в результате ряда энзиматических реакций образуют бета-гидрокси-бета-метилглутарил-КоА (ГМГ-КоА), который затем восстанавливается в мевалоновую кислоту. В последнее время показано, что в синтез мевалоновой кислоты в печени может включаться и малонил-КоА.

Реакцией, определяющей скорость биосинтеза холестерина в целом, является восстановление ГМГ-КоА в мевалоновую кислоту; этот процесс катализирует фермент НАДФ-Н2-зависимая ГМГ-КоА-редуктаза (КФ 1.1.1.34). Именно этот фермент подвержен воздействиям со стороны ряда факторов. Так, активность ГМГ-КоА-редуктазы повышается (или содержание ее в печени возрастает) и скорость синтеза холестерина в целом увеличивается при действии ионизирующего излучения, введении тиреоидных гормонов, поверхностно-активных веществ, холестирамина, а также при гипофизэктомии. Угнетение синтеза холестерина отмечается при голодании, тиреоидэктомии и при поступлении в организм пищевого холестерина. Последний угнетает активность (или синтез) фермента ГМГ-КоА-редуктазы.

Синтез холестерина в стенке тонкой кишки регулируется исключительно концентрацией желчных кислот. Так, отсутствие их в кишечнике при наличии наружного желчного свища ведет к повышению синтеза холестерина в тонкой кишке в 5-10 раз.

На второй стадии синтеза происходит фосфорилирование мевалоновой кислоты при участии АТФ и образование нескольких фосфорилированные промежуточных продуктов (см. Фосфорилирование). При декарбоксилировании одного из них образуется изопентенил-пирофосфат, часть которого превращается в диметилаллил-пирофосфат. Взаимодействие этих двух соединений приводит к образованию димера — геранил-пирофосфата, содержащего 10 атомов углерода. Геранил-пирофосфат конденсируется с новой молекулой изопентенил-пирофосфата и образует тример — фарнезил-пирофосфат, содержащий 15 атомов углерода. Эта реакция идет с отщеплением молекулы пирофосфата. Затем две молекулы фарнезил-пирофосфата конденсируются, теряя каждая свой пирофосфат, и образуют гексамер сквален, содержащий 30 атомов углерода.

Третья стадия синтеза включает окислительную циклизацию сквалена, сопровождающуюся миграцией двойных связей и образованием первого циклического соединения — ланостерина. Ланостерин уже имеет гидроксильную группу в положении 3 и три лишние (по сравнению с холестерином) метильные группы. Дальнейшее превращение ланосте-рина может совершаться двумя путями, причем и в том и в другом случае промежуточными продуктами являются соединения стериновой природы. Более доказанным считается путь через 24, 25-дигидроланостерин и ряд других стеринов, включая 7-дигидрохолестерин, служащий непосредственным предшественником холестерина. Другой возможный путь — превращение ланостерина в зимостерин, а затем в десмостерин, из которого при восстановлении образуется холестерин.

Если суммировать общий итог всех реакций биосинтеза холестерина, то он может быть представлен в следующем виде:

18CH3CO-S-KoA + 10(H+) + 1/2O2 -> C27H46O + 9CO2 + 18KoA-SH. Источником углерода холестерина является ацетил-КоА (им может быть также малонил-КоА и лейцин), источником водорода — вода и никотин-амида дениндинуклеотидфосфат, а источником кислорода — молекулярный кислород.

Читайте также:  Рецепт фадеева семечки от холестерина

Начиная со сквалена и кончая холестерином все промежуточные продукты биосинтеза нерастворимы в водной среде, поэтому они участвуют в конечных реакциях биосинтеза холестерина в связанном со сквален или стеринпереносящими белками состоянии. Это позволяет им растворяться в цитоплазме клетки и создает условия для протекания соответствующих реакций. Холестерин-переносящий белок обеспечивает также перемещение стеринов внутри клетки, что имеет важное значение для вхождения его в мембрану клетки, а также для транспорта в клеточные системы, осуществляющие катаболизм холестерина.

Катаболизм холестерина протекает в печени (окисление его в желчные кислоты), в надпочечниках и плаценте (образование из холестерина стероидных гормонов), в тестикулярной ткани и яичниках (образование половых гормонов). При биосинтезе холестерина в коже на завершающей стадии образуется небольшое количество 7-дегидрохолестерина. Под влиянием УФ-лучей он превращается в витамин D3.

Своеобразные превращения претерпевает холестерин в толстой кишке. Речь идет о той части пищевого холестерина или холестерина, поступившего в кишечник с желчью, которая не подверглась всасыванию. Под влиянием микробной флоры толстой кишки происходит восстановление холестерина и образование так наз. нейтральных стеринов. Главным их представителем является копростерин. Экспериментальные исследования, проведенные с использованием радиоизотопных и других методов, показали, что скорость обновления холестерина в различных органах и тканях неодинакова; наиболее высока она в надпочечниках и печени и чрезвычайно низка в мозге взрослых животных.

Патология холестеринового обмена

Нарушения холестеринового обмена обычно связаны с дисбалансом между количеством синтезируемого в организме и поступающего с пищей холестерина, с одной стороны, и количеством холестерина, подвергающегося катаболизму,- с другой. Эти нарушения проявляются в изменении уровня холестерина в плазме крови, которые классифицируются как гиперхолестеринемия или гипохолестеринемия (для взрослого населения высокоразвитых стран величины выше 270 мг/100 мл и ниже 150 мг/100 мл соответственно).

Гиперхолестеринемия может быть первичной (наследственной или алиментарной) и вторичной, обусловленной различными заболеваниями. Наследственная (семейная) гиперхолестеринемия характеризуется высоким уровнем холестерина и липопротеидов низкой плотности (ЛПНГЛ в плазме крови. При гомозиготной гиперхолестеринемии уровень холестеринемии может достигать 700- 800 мг/100 мл, а при гетерозиготной — 300-500 мг/100 мл. В основе наследственной гиперхолестеринемии лежит генетически обусловленное отсутствие (у гомозигот) или недостаток (у гетерозигот) специфических рецепторов к липопротеидам низкой плотности у клеток, вследствие чего резко снижается захват и последующий катаболизм этих богатых холестерином липопротеидов клетками паренхиматозных органов и тканей. В результате пониженного захвата и снижения катаболизма липопротеидов низкой плотности развивается гиперхолестеринемия (см.). Последняя приводит к раннему развитию атеросклероза (см.) и его клинических проявлений — ишемической болезни сердца (см.), преходящей ишемии мозга (см. Инсульт) и др. Особенно тяжело протекает атеросклероз при гомозиготной форме; у таких больных часто наблюдается ксантоматоз (см.), липоидная дуга роговицы (отложение холестерина в роговицу глаз), инфаркт миокарда в юношеском возрасте.

Распространенность гомозиготной формы гиперхолестеринемии невелика (примерно один случай на 1 млн. жителей). Чаще встречается гетерозиготная форма — один случай на 500 жителей.

Алиментарная гиперхолестеринемия характеризуется повышенным уровнем холестерина в плазме крови вследствие длительного потребления больших количеств пищи, богатой холестерином (куриные желтки, икра, печень, животные жиры и др.). Алиментарная гиперхолестеринемия той или иной степени выраженности характерна для жителей высокоразвитых индустриальных стран. Согласно популяционным исследованиям имеется прямая зависимость между уровнем холестерина в крови и распространенностью ишемической болезни сердца.

В эксперименте на различных животных (кролики, морские свинки, обезьяны) показано, что введение массивных доз холестерина с пищей приводит к резко выраженной гиперхолестеринемии и быстрому развитию атеросклероза. Экспериментальные модели гиперхолестеринемии и атеросклероза, впервые предложенные H. Н. Аничковым и С. С. Халатовым (1913), широко используются в научных исследованиях.

Вторичная гиперхолестеринемия встречается при гипотиреозе (см.), сахарном диабете (см. Диабет сахарный), нефротическом синдроме (см.), подагре (см.) и др. и нередко сопровождается развитием атеросклероза (см. Гиперхолестеринемия).

Выделяют первичную и вторичную гипохолестеринемию. Первичная гипохолестеринемия характерна для наследственного заболевания — абеталипопротеинемии (см.). При этой болезни отмечается почти полное отсутствие в плазме крови липопротеидов низкой плотности (у гомозигот) или значительное их снижение (у гетерозигот). Уровень общего холестерина не превышает 75 мг/ 100 мл. Гомозиготная форма болезни протекает исключительно тяжело. В основе абеталипопротеинемии лежит генетически обусловленное нарушение синтеза апопротеина В — главного белка липопротеидов низкой плотности.

Вторичные гипохолестеринемии наблюдаются при кахексии, гипертиреоидизме, аддисоновой болезни и паренхиматозных заболеваниях печени, при ряде инфекционных болезней и интоксикациях (см. Гипохолестеринемия). При недостаточной активности в плазме крови фермента лецитин — холестерин -ацилтрансферазы, или ЛХАТ (наследственная ЛXАТ-недостаточность), ответственного за этерификацию холестерина плазмы, наблюдается накопление неэтерифицированного холестерина в мембранах эритроцитов и клетках почек, печени, селезенки, костного мозга, роговицы глаза. Резко снижается доля этерифицированного холестерина в плазме крови и одновременно повышается уровень неэтерифицированного холестерина и лецитина. У больных с наследственной ЛXAT-недостаточностыо стенки артерий и капилляров подвержены деструктивным изменениям, что связано с отложением в них липидов. Наиболее тяжелые изменения происходят в сосудах почечных клубочков, что приводит к развитию почечной недостаточности (см.).

Одним из распространенных нарушений холестериновый обмен. является образование желчных камней, основной составной частью которых является холестерин (см. Желчнокаменная болезнь). Образование желчных камней происходит вследствие выкристаллизовывания холестерина при относительно высокой его концентрации в желчи и относительно низкой концентрации в ней желчных кислот и фосфолипидов, обладающих способностью растворять холестерин. Исследования показали, что имеется прямая связь между уровнем холестерина в плазме крови и распространенностью холестероза (см.) и желчнокаменной болезни.

Библиогр.: Климов А. Н, и Н икульчева Н. Г. Липопротеиды, дислипопротеидемии и атеросклероз, Л., 1984; Полякова Э. Д. Пути биосинтеза холестерина в печени и их регуляция, в кн.: Липиды, структура,биосинтез, превращения и функции, под ред. С. Е. Северина, с. 131, М., 1977;она же, Регуляция содержания холестерина в клетке, в кн.: Биохимия липидов и их роль в обмене веществ, под ред.С. Е. Северина, с. 120, М., 1981; Финагин Л. К. Обмен холестерина и его регуляция, Киев, 1980; Lipids and lipidoses, ed. by G. Schettler, B.- Heidelberg, 1967; Sodhi H. S., Kudchod-k a r B. J. a. Mason D. T. Clinical methods in study of cholesterol bolism, Basel a. o., 1979.

Читайте также:  Зож как понизить холестерин

A. H. Климов

Источник

Подсказки фармацевту: ЛС при атеросклерозе

Гиполипидемические препараты: механизм действия, побочные эффекты и особенности приема

Атеросклероз, в основе которого лежит комплекс сложных нарушений метаболизма липидов, — один из важнейших факторов риска развития сосудистых катастроф. Тесно связанная с ним гиперхолестеринемия выявляется более чем у 60 % госпитализированных пациентов в возрасте 30-69 лет [1]. Поэтому препараты, способствующие нормализации липидных параметров, пользуются в аптеках стабильным спросом. По всей вероятности, он будет только расти: ведь средний возраст населения России растет и число больных сердечно-сосудистыми заболеваниями увеличивается. И чтобы качественно проводить фармконсультирование, первостольникам важно помнить, как работают гиполипидемические ЛС, какие побочные эффекты они проявляют и о чем нужно предупредить клиента с соответствующим рецептом.

Начало начал: классификация

В первую очередь вспомним, какие гиполипидемические препараты есть сегодня в ассортименте аптек.

Таблица 1: Гиполипидемические ЛС

Средства, понижающие содержание в крови преимущественно холестерина (ЛПНП)
Ингибиторы синтеза холестерина (ингибиторы 3-гидрокси-3-метилглутаргил коэнзим А-редуктазы, или статины)аторвастатин, ловастатин, питавастатин, правастатин,

розувастатин, симвастатин, флувастатин

Ингибиторы всасывания холестерина из кишечникаэзетимиб
Средства, понижающие содержание в крови преимущественно триглицеридовПроизводные фиброевой кислоты, или фибратыгемфиброзил

фенофибрат

Средства, понижающие содержание в крови холестерина (ЛПНП) и триглицеридов (ЛПОНП)Кислота никотиновая

Гиполипидемические препараты могут обеспечивать нормализацию липидного профиля за счет реализации различных механизмов. Среди них [1, 2]:

  • cамый распространенный механизм действия: активация захвата липопротеинов за счет стимуляции ЛПНП-рецепторов, расположенных в печени;
  • блокирование синтеза липидов и липопротеинов в печени;
  • ингибирование всасывания холестерина и желчных кислот из кишечника;
  • активация катаболизма холестерина, в том числе — его превращения в желчные кислоты;
  • стимуляция активности фермента, расщепляющего липиды, — липопротеинлипазы эндотелия сосудов;
  • блокирование синтеза жирных кислот в печени и их высвобождения из жировой ткани (ингибирование липолиза);
  • повышение содержания в крови антиатерогенных ЛПВП.

Рассмотрим подробнее, как работают представители различных подгрупп гиполипидемических препаратов и какие особенности они имеют.

Фармакология статинов

Статины — препараты первой линии для лечения гиперлипидемии, которые выделяются самой высокой липолитической активностью среди всех подгрупп гиполипидемических препаратов [3, 4]. Первые представители статинов были получены из плесневых культур. Речь идет о ловастатине — он был выделен в 1980 году из содержащегося в почве плесневого грибка Aspergillus terreus. В клинической практике ловастатин начал использоваться в 1987 году, положив начало эре самых мощных гиполипидемических средств [5].

Последующие ЛС этой подгруппы имеют полусинтетическое (симвастатин, правастатин) и синтетическое происхождение (флувастатин, аторвастатин, розувастатин).

Механизм действия

Статины снижают синтез холестерина и липопротеинов очень низкой плотности (ЛПОНП) в печени за счет угнетения активности ключевого фермента, участвующего в раннем этапе синтеза холестерина (ГМГ-КоА-редуктазы, — прим. ред.). В результате происходит цепочка изменений [3]:

  • в клетках печени снижается уровень холестерина;
  • на несколько часов в клетках печени увеличивается синтез холестерина (компенсаторно);
  • на несколько суток на мембране гепатоцитов увеличивается количество специфических рецепторов, связывающих ЛПНП и снижающих их концентрацию в крови;
  • компенсаторно увеличивается число липопротеиновых рецепторов печени;
  • уменьшается концентрация ЛПНП, ЛПОНП, аполипопротеина; в меньшей степени снижается уровень триглицеридов;
  • увеличивается содержание ЛПВП.

Важно отметить, что гиполипидемический эффект при приеме статинов проявляется быстро, примерно в течение недели после начала терапии.

Кроме того, для статинов характерны нелипидные плейотропные эффекты, среди которых следует выделить:

  • улучшение функции эндотелия сосудов;
  • подавление воспалительной активности в сосудистой стенке;
  • уменьшение процессов окисления ЛПНП;
  • истощение и стабилизация ядра атеросклеротической бляшки;
  • ингибирование тромбообразования;
  • противовоспалительный эффект.

Статины также оказывают профилактическое действие в отношении сердечно-сосудистых заболеваний. Доказано, что они снижают риск смертности от больших сердечно-сосудистых событий (инфаркт миокарда, инсульт) и развития сердечно-сосудистых заболеваний [4]. Результаты Кокрановского обзора свидетельствуют, что статины снижают риск повторного инсульта [4].

К статинам (как, впрочем, и к гиполипидемическим препаратам других подгрупп) не развивается устойчивость.

Безопасность статинов при беременности не изучалась, поэтому женщинам репродуктивного возраста во время лечения важно использовать эффективную контрацепцию. При лактации статины также противопоказаны [5].

Побочные эффекты

Как правило, статины хорошо переносятся, однако неблагоприятные реакции при их приеме возможны. Среди самых распространенных — диспепсические явления (тошнота, рвота, боль в животе, диарея, снижение аппетита), неврологические (головокружение, раздражительность). На фоне приема статинов может появляться мышечная боль и ассоциированная с ней мышечная слабость: они возникают у 10 % пациентов [4].

Редким серьезным побочным эффектом статинов является разрушение мышечной ткани — рабдомиолиз. Он, как правило, проявляется при комбинации неблагоприятных факторов, например, приеме статинов на фоне применения иммунодепрессантов [4].

О чем предупредить клиента?

Статины быстро оказывают гиполипидемическое действие, однако, даже если анализы демонстрируют нормализацию уровня липидов, отменять препараты без рекомендации врача нельзя. При их отмене уровень липидов часто вновь повышается. Препараты применяют длительно, иногда пожизненно.

Препараты, ингибирующие всасывание холестерина в кишечнике

Первым и пока единственным лекарственным средством этой подгруппы стал эзетимиб. Он работает в основном в ворсинчатом эпителии щеточной каймы тонкой кишки.

Механизм действия основан на ингибировании транспортера холестерина в энтероцитах кишечника. Это обеспечивает снижение всасывания холестерина примерно на 50 %. Также уменьшается уровень ЛПНП и ЛПОНП на 20-25 % и незначительно повышается содержание ЛПВП.

Максимальное действие препарата развивается через 2 недели. При монотерапии в стандартной дозе 10 мг в сутки эзетимиб обеспечивает снижение концентрации ЛПНП не более чем на 17-18 %, поэтому чаще его применяют в комбинации со статинами [3].

Побочные эффекты

Как правило, эзетимиб хорошо переносится. В редких случаях он может вызывать изменение уровня ферментов печени, а также боли в спине, артралгию, слабость [1, 3].

О чем предупредить клиента?

Если врач выписал комбинацию эзетимиба и статинов, важно придерживаться рекомендаций и принимать оба препарата, чтобы достичь оптимального гиполипидемического эффекта.

Фибраты

Фибраты — первые эффективные гипотриглицеридемические препараты, которые начали применять для лечения атеросклероза. Выделяют два поколения этой подгруппы: к первому относится клофибрат, который в настоящее время не зарегистрирован из‑за низкого профиля безопасности. Появились данные, что на фоне длительного применения клофибрата увеличивается смертность, не связанная с сердечно-сосудистыми заболеваниями, а также повышается вероятность развития опухолей пищеварительного тракта и печени [1].

Сегодня применяются только фибраты второго поколения, имеющие благоприятный профиль безопасности: фенофибрат, безафибрат, ципрофибрат и гемфиброзил.

По эффективности все фибраты второго поколения сходны, а вот по фармакокинетике препараты различаются. Наиболее длительно действует фенофибрат (20-25 часов) и ципрофибрат (более 48 часов) [1]. При этом максимальный клинический эффект развивается только спустя несколько недель применения. Так, для гемфиброзила этот показатель составляет не менее 4 недель.

Механизм действия фибратов до сих пор остается не до конца ясным [5]. Исследования последних лет свидетельствуют, что многие их эффекты связаны со взаимодействием с рецепторами, активируемыми пероксисомными пролифераторами (PPAR). Они играют существенную роль в регуляции транскрипции генов. Фибраты связываются с PPAR, которые экспрессируются в первую очередь в печени и бурой жировой ткани, и, предположительно, за счет PPAR-опосредованной стимуляции окисления жирных кислот, обеспечивают [4]:

  • снижение уровня триглицеридов на 20-50 % — это класс-эффект фибратов;
  • снижение уровня ЛПОНП, ЛПНП;
  • ингибирование синтеза холестерина, что приводит к снижению его уровня в среднем на 10-15 %;
  • увеличение концентрации ЛПВП (при длительном применении).

На фоне приема фибратов также уплотняются атеросклеротические бляшки в стенке сосудов, что приводит к увеличению их просвета. Кроме того, препараты этой группы оказывают антиагрегантное действие.

Фибраты назначаются длительно, как правило, на протяжении нескольких лет.

Побочные эффекты

Нежелательные реакции при приеме фибратов развиваются в 2-15 % случаев. Чаще всего возникают диспепсические расстройства — тошнота, диарея; кожные реакции (сыпь). Реже появляются сонливость, нарушение оттока желчи, миозит.

О чем предупредить клиента?

Фибраты лучше применять утром во время еды, поскольку синтез липопротеидов, богатых триглицеридами, интенсивнее происходит именно в утренние часы.

Производные никотиновой кислоты

Ниацин, или никотиновая кислота, — один из самых «заслуженных» препаратов, который используется для лечения гиперлипидемии с 1955 года [6]. Она действует только после превращения в организме в никотинамид и последующего связывания с коэнзимами кодегидразой I и кодегидрозой II, которые переносят водород.

Отличительные действия никотиновой кислоты по сравнению с другими гиполипидемическими препаратами — способность выраженно повышать уровень ЛПВП, а также вазодилатирующий эффект.

Гиполипидемическое действие ниацина требует более высоких доз, чем необходимо для проявления витаминного эффекта. В среднем доза никотиновой кислоты как гиполипидемического средства в 100 раз выше, чем в качестве витамина [1].

Механизм действия основан на ингибировании липолиза триглицеридов в жировой ткани. Никотиновая кислота уменьшает синтез ЛПОНП, снижает уровень общего холестерина, ЛПНП, триглицеридов и повышает содержание ЛПВП на 15-30 %. Препарат также обладает антиатерогенными свойствами [5].

Наряду с гиполипидемическим эффектом никотиновая кислота расширяет мелкие сосуды (в том числе сосуды головного мозга), улучшает микроциркуляцию, оказывает слабое антикоагулянтное действие.

Уровень триглицеридов начинает снижаться уже через 1-4 дня после начала приема никотиновой кислоты, в то время как содержание холестерина падает на 5-7 день применения препарата.

Побочные эффекты

Наряду с довольно мощными гиполипидемическими свойствами никотиновая кислота выделяется плохой переносимостью. До 40 % пациентов отказываются от ее приема из‑за побочных эффектов [6]. Одним из побочных эффектов, связанных с низким комплаенсом, является ощущение жара и приливов, обусловленное выбросом простагландинов. Этот эффект может быть снижен за счет постепенного титрования дозы и назначения ацетилсалициловой кислоты в дозе 250 мг за полчаса до приема никотиновой кислоты.

На фоне применения высоких доз никотиновой кислоты (как правило, составляющих 2-6 г в сутки) возможно появление кожного зуда и диспепсии — рвоты, диареи. Существует вероятность образования пептической язвы желудка, нарушения функции печени, повышения уровня глюкозы и мочевой кислоты в крови. Из-за возможного развития гиперурикемии никотиновая кислота противопоказана при подагре. Ее также не рекомендуют применять при сахарном диабете и метаболическом синдроме [1, 3].

Ввиду не очень хорошей переносимости никотиновой кислоты были синтезированы ее производные, имеющие более высокий профиль безопасности. Одним из самых назначаемых стал ксантинола никотинат.

О чем предупредить клиента?

Никотиновая кислота за счет вазодилатирующего действия может потенцировать эффект гипотензивных препаратов и приводить к внезапному снижению артериального давления, поэтому применять ее на фоне антигипертензивной терапии нужно осторожно, после консультации с врачом [7].

Никотиновую кислоту рекомендуют принимать во время еды.

Комбинированная гиполипидемическая терапия

В некоторых случаях врачи назначают комбинацию гиполипидемических препаратов с разным механизмом действия. Самое распространенное показание — тяжелая гиперлипидемия. Чаще всего в комплексе применяют фибраты со статинами. Никотиновую кислоту с другими гиперлипидемическими средствами комбинируют очень осторожно, под контролем врача [6].

При неэффективности двухкомпонентной схемы лечения могут применяться сразу три препарата, например, статины, ингибиторы всасывания холестерина и никотиновая кислота [3].

Источники

  1. Харкевич Д.А. Фармакология. 10-е изд. М.: ГЭОТАР-Медиа, 2010. — 908 с.
  2. Morris Brown, Peter Bennett. Clinical Pharmacology 11th Edition, 2012.
  3. Клиническая фармакология и фармакотерапия: учебник. — 3-е изд., доп. и перераб. / под ред. В.Г. Кукеса, А.К. Стародубцева. — М.: ГЭОТАР-Медиа, 2012. — 832 с.
  4. Bardal S. K., Waechter J. E., Martin D. S. Applied pharmacology. — Elsevier Health Sciences, 2011.
  5. Goodman and Gilman’s The Pharmacological Basis of Therapeutics, Twelfth Edition
  6. Джанашия П.Х. и соавт. Медикаментозная гиполипидемическая терапия. Medi.ru URL: https://medi.ru//3448/ (дата обращения 29.05.2020).

Источник

Читайте также:  Холестерин коэффициент атерогенности расчет